Versatile and robust transparent polymer film with preprogrammed diffusion and bidirectional irreversible fluorescence for sequential information encryption.

J Colloid Interface Sci

Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:

Published: January 2025

The materials currently available for information encryption often suffer from low transparency, poor mechanical strength, and a reliance on single decryption conditions, which limits their security and hence application potential. To address these challenges, we developed a transparent, mechanically robust polymer film inspired by the camouflage and communication strategies of the glass squid. In this film, 2,5-dihydroxyterephthalic acid (DHTA) and zinc acetate dihydrate are integrated into a crosslinked polyvinyl alcohol-glutaraldehyde (PVA-GA) matrix to achieve bidirectional irreversible fluorescence and sequential decryption. The material exhibits high transparency (>89 %) and impressive tensile strength (60 MPa), and its fluorescence responses can be tuned with UV light, alkaline conditions, and high-temperature ethanol solutions. Based on preprogrammed diffusion rates, customizable time-based decryption can be achieved with the film, advancing multilevel encryption techniques. These findings demonstrate that this film represents a promising platform for secure information encryption and anticounterfeiting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.116DOI Listing

Publication Analysis

Top Keywords

polymer film
8
preprogrammed diffusion
8
bidirectional irreversible
8
irreversible fluorescence
8
fluorescence sequential
8
film
5
versatile robust
4
robust transparent
4
transparent polymer
4
film preprogrammed
4

Similar Publications

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Scalable, Flexible, and UV-Resistant Bacterial Cellulose Composite Film for Daytime Radiative Cooling.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China.

Radiative cooling, a passive cooling technology, functions by reflecting the majority of solar radiation (within the solar spectrum of 0.3-2.5 μm) and emitting thermal radiation (within the atmospheric windows of 8-13 μm and 16-20 μm).

View Article and Find Full Text PDF

Cyanine dye-embedded fluorescent film for ratiometric pH measurement.

Photochem Photobiol Sci

January 2025

CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, 91405, Orsay, France.

The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pK around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response.

View Article and Find Full Text PDF

The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.

View Article and Find Full Text PDF

A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells.

Nat Commun

January 2025

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.

To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!