Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification. We propose a hybrid data augmentation approach that combines traditional transformations, generative adversarial networks, and specific generative models. Experimental results demonstrate that the hybrid data augmentation method, achieves the highest accuracy of 99.54%, significantly outperforming individual data augmentation techniques. This hybrid approach not only improves model accuracy but also mitigates overfitting issues, making it a promising solution for medical image classification tasks with limited data availability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/adabeaDOI Listing

Publication Analysis

Top Keywords

data augmentation
20
hybrid data
12
corneal topographic
12
augmentation strategies
8
deep learning
8
topographic map
8
map classification
8
data
6
augmentation
5
hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!