Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates. However, there is a lack of longitudinal studies that study this relationship from fetuses to neonates.
Method: We used a longitudinal dataset of 30 subjects (15 healthy controls and 15 subjects diagnosed with isolated non-severe VM (INSVM)) with structural MRI acquired in and ex utero for each subject. We focused on the impact of fetal INSVM on cortical development from a longitudinal perspective, from the fetal to the neonatal stage. Particularly, we examined the relationship between ventricular enlargement and both volumetric features and a multifaceted set of cortical folding measures, including local gyrification, sulcal depth, curvature, and cortical thickness.
Findings: Our results show significant effects of isolated non-severe VM (INSVM) compared to healthy controls, with reduced cortical thickness in specific brain regions such as the occipital, parietal, and frontal lobes.
Conclusion: These findings align with existing literature, confirming the presence of alterations in cortical growth and folding in subjects with isolated non-severe VM (INSVM) from the fetal to neonatal stage compared to controls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/brb3.70255 | DOI Listing |
Brain Behav
January 2025
BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Zoology, The University of Burdwan, West Bengal, India.
Thalassemia is a hematological disorder caused by mutations in the hemoglobin gene, often necessitating regular blood transfusions. These frequent transfusions exert continuous pressure on patients' immune systems. Despite extensive research on the hematological aspects of thalassemia, few studies have explored the immune status of these patients.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Respiratory Medicine, Children's Hospital of Soochow University, Jingde Road No. 303, Suzhou, 215003, China.
Background: The aim of this study was to investigate the clinical characteristics of severe pneumonia caused by human bocavirus (HBoV) infection to explore the associated risk factors.
Methods: We conducted a retrospective review of data from children hospitalized with HBoV pneumonia. Based on the severity of pneumonia, patients were categorized into severe pneumonia and non-severe pneumonia groups.
Biomedicines
December 2024
Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Stefana Batorego 15, 41-902 Bytom, Poland.
The widening of the vestibular dimension of lateral ventricles > 10 mm should be considered a symptom rather than a definitive diagnosis. In fact, fetal ventriculomegaly (VM) is a defect with 'multifaceted' clinical consequences in the child's further neurodevelopment. Isolated fetal ventriculomegaly can cause neurological defects ranging from mild neurodevelopmental delay to severe complications in the form of ongoing palliative care to the death of patients at various developmental periods.
View Article and Find Full Text PDFExp Parasitol
December 2024
Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!