Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy.

Tissue Eng Regen Med

Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.

Published: January 2025

Background: Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options. However, the efficacy of the therapy remains poorly understood. Also, the potential of exosome mimetics as alternatives to exosomes in skin therapy remains underexplored.

Methods: Here, we reviewed the pathological features and current therapies of AD. Next, we reviewed the application of exosomes and exosome mimetics in regenerative medicine. Finally, we highlighted the therapeutic effects of exosomes based on their cell source and assessed whether exosome mimetics are viable alternatives.

Results And Conclusion: Exosome therapy may treat AD due to its skin regenerative properties, and exosome mimetics may offer an equally effective yet more efficient alternative. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13770-024-00695-5DOI Listing

Publication Analysis

Top Keywords

exosome mimetics
28
exosomes exosome
16
exosome
9
atopic dermatitis
8
mimetics alternatives
8
skin barrier
8
exosome therapy
8
therapy treat
8
mimetics represents
8
represents promising
8

Similar Publications

Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy.

Tissue Eng Regen Med

January 2025

Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.

Background: Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation.

View Article and Find Full Text PDF

Hydrogel-integrated exosome mimetics derived from osteogenically induced mesenchymal stem cells in spheroid culture enhance bone regeneration.

Biomaterials

January 2025

Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. Electronic address:

Exosomes derived from mesenchymal stem cells (MSCs) offer a promising alternative to traditional cell-based therapies for tissue repair by mitigating risks associated with the transplantation of living cells. However, insufficient osteogenic capacity of exosomes diminishes their potential in bone tissue regeneration. Here, we report novel osteogenically induced exosome mimetics (EMs) integrated into injectable hydrogel carriers for improved bone regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs) from gestational tissues are promising for treating congenital malformations but face challenges like invasiveness, prompting the exploration of less risky alternatives like naturally occurring exosomes (EXOs) and their mimics (MIMs) from amniotic fluid-derived MSCs (AF-MSCs).
  • The study involved creating MIMs, comparing their properties to EXOs, and evaluating their safety and distribution in a mouse model predisposed to neural tube defects.
  • Results indicated that MIMs and EXOs have similar characteristics, with MIMs yielding three times more product, and no adverse effects were found in pregnant mice, making MIMs a promising, minimally invasive therapeutic option.
View Article and Find Full Text PDF

Phosphatidylserine-incorporated exosome mimetics encapsulating CXCR3 antagonist alleviate osteoporosis.

Adv Funct Mater

September 2024

Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA.

Exosomes derived from mesenchymal stem cells are an active area of research due to their therapeutic potential in treating osteoporosis. To further harness their therapeutic performance in modulating bone resorption, we have equipped exosomes with osteoclast-targeting moieties on their surface as well as chemokine receptor antagonists blocking osteoclast recruitment. Phosphatidylserine (PS), a membrane lipid exerting immunosuppressive and phagocytic signals, was incorporated in the membrane of exosome mimetics (EMs) to achieve a marked affinity for osteoclast precursors and potential anti-resorptive effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!