Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.
Objectives: To develop a complementary analytical method for the detection and identification of additional VOCs from breath. To develop and implement upgrades to the methodology for identifying features determined to be "on-breath" by comparing breath samples against paired background samples applying three metrics: standard deviation, paired t-test, and receiver-operating-characteristic (ROC) curve.
Methods: A thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS)-based analytical method utilizing a PEG phase GC column was developed for the detection of biologically relevant VOCs. The multi-step VOC identification methodology was upgraded through several developments: candidate VOC grouping schema, ion abundance correlation based spectral library creation approach, hybrid alkane-FAMES retention indexing, relative retention time matching, along with additional quality checks. In combination, these updates enable highly accurate identification of breath-borne VOCs, both on spectral and retention axes.
Results: A total of 621 features were statistically determined as on-breath by at least one metric (standard deviation, paired t-test, or ROC). A total of 38 on-breath VOCs were able to be confidently identified from comparison to chemical standards.
Conclusion: The total confirmed on-breath VOCs is now 186. We present an updated methodology for high-confidence VOC identification, and a new set of VOCs commonly found on-breath.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11306-024-02218-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!