This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport. The ability to engineer nanoparticles with specific physicochemical properties-such as size, surface charge, and functionalization-enhances their targeting capabilities, particularly towards astrocytes, which play a crucial role in maintaining BBB integrity and responding to neuroinflammation. Insights gained from Drosophila studies have informed the design of personalized nanomedicine strategies aimed at treating neurodegenerative diseases, including Alzheimer's, Parkinson's disease etc. As research progresses, the integration of findings from Drosophila models with emerging humanized BBB systems will pave the way for innovative therapeutic approaches that improve drug delivery and patient outcomes in neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-025-04333-xDOI Listing

Publication Analysis

Top Keywords

drosophila models
8
drug delivery
8
drosophila
5
bbb
5
nanoparticle interactions
4
interactions blood
4
blood brain
4
brain barrier
4
barrier insights
4
insights drosophila
4

Similar Publications

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

A lack of tools for detecting receptor activity has limited our ability to fully explore receptor-level control of developmental patterning. Here, we extend a new class of biosensors for receptor tyrosine kinase (RTK) activity, the pYtag system, to visualize endogenous RTK activity in . We build biosensors for three RTKs that function across developmental stages and tissues.

View Article and Find Full Text PDF

Unlabelled: The deubiquitinating enzyme BAP1, the catalytic subunit of the PR-DUB complex, is implicated in several cancers, in the familial cancer syndrome BAP1 Tumor Predisposition Syndrome, and in the neurodevelopmental disorder Küry -Isidor syndrome. In there are numerous reports in the literature describing developmental patterning phenotypes for several chromatin regulators including the discovery of Polycomb itself, but corresponding adult morphological phenotypes caused by developmental dysregulation of ortholog ( ) are less well-described. We report here that knockdown of in the eye and wing produce concomitant chromatin dysregulation phenotypes.

View Article and Find Full Text PDF

Unlabelled: The rapid growth that occurs during larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth.

View Article and Find Full Text PDF

Safety and Antioxidant Assessments of BLR-E50, 50% Ethanolic Extract from Red Beans Co-fermented by Bacillus subtilis and Lactobacillus bulgaricus.

Food Chem Toxicol

January 2025

Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan. Electronic address:

Since red beans have poor textural properties, fermentation is commonly used to help produce better pulse products. To obtain BLR-E50, red beans are fermented using a co-culture of Bacillus subtilis and Lactobacillus bulgaricus, followed by extraction with 50% ethanol. The present data demonstrate that BLR-E50 did not exhibit mutagenicity, genotoxicity, or subacute oral toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!