Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.  Such unique architecture enables a rapid lithium transfer through the well-organized pore channels and endows a stronger adsorption capability to lithium atom as compared to the arbitrarily-stacked mode. The resultant HsGDY exhibits a reversible capacity of 1040 mA h g-1 at 0.05 A g-1 ranking among the most powerful GDY-based electrode materials, and an excellent rate performance as well as a long-term cycling stability. The successful preparation of gram-level high-quality HsGDY products in batches implies the potential for large-scale lithium-storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202422089DOI Listing

Publication Analysis

Top Keywords

aa-stacked hydrogen-substituted
4
hydrogen-substituted graphdiyne
4
graphdiyne enhanced
4
lithium
4
enhanced lithium
4
lithium storage
4
storage graphdiyne
4
graphdiyne gdy
4
gdy considered
4
considered promising
4

Similar Publications

AA-Stacked Hydrogen-Substituted Graphdiyne for Enhanced Lithium Storage.

Angew Chem Int Ed Engl

January 2025

Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.

Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!