Chimeric antigen receptor (CAR) T-cell therapy has reshaped the face of cancer treatment, leading to record remission rates in previously incurable hematological cancers. These successes have spurred interest in adapting the CAR platform to a small yet pivotal subset of CD4 T cells primarily responsible for regulating and inhibiting the immune response, regulatory T cells (Tregs). The ability to redirect Tregs' immunosuppressive activity to any extracellular target has enormous implications for creating cell therapies for autoimmune disease, organ transplant rejection, and graft-versus-host disease. Here, we describe in detail methodologies for bona fide Treg isolation from human peripheral blood, genetic modification of human Tregs utilizing either lentivirus or CRISPR/Cas9-aided knock-in using adeno-associated virus-mediated homologous directed repair (HDR) template delivery, and ex vivo expansion of stable human CAR Tregs. Lastly, we describe the assessment of human CAR Treg phenotypic stability and in vitro suppressive function, which provides insights into how the human CAR Tregs will behave in preclinical and clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!