Background: Hypertrophic cardiomyopathy is the most common genetic cardiomyopathy and causes major adverse cardiovascular events (MACE). SVEP1 (Sushi, von Willebrand factor type A, epidermal growth factor, and pentraxin domain containing 1) is a large extracellular matrix protein that is detectable in the plasma. However, it is unknown whether adding plasma SVEP1 levels to clinical predictors including NT-proBNP (N-terminal pro-B-type natriuretic peptide) improves the prognostication in patients with hypertrophic cardiomyopathy.

Methods: We performed a multicenter prospective cohort study of 610 patients with hypertrophic cardiomyopathy. The outcome was MACE defined as heart failure hospitalization or cardiac death. In 4 groups stratified by the median levels of SVEP1 and NT-proBNP, we compared the risk of MACE using the Cox proportional hazards model adjusting for 15 clinical predictors. We also developed a Lasso-regularized Cox proportional hazards model to predict time to first MACE by adding SVEP1 to the 15 clinical predictors with or without NT-proBNP and compared the predictive performance based on C statistics using 10-fold cross-validation.

Results: Even in the low NT-proBNP groups, the high SVEP1 group had higher risks of MACE compared with the low SVEP1 group (adjusted hazard ratio, 4.52 [95% CI, 1.05-19.4]; =0.042). In predicting time to first MACE, the addition of SVEP1 improved the C statistics of the clinical plus NT-proBNP model (0.87 [0.83-0.91] versus 0.82 [0.78-0.86]; =0.01). The clinical plus SVEP1 model also outperformed the clinical plus NT-proBNP model (0.86 [0.82-0.91] versus 0.82 [0.78-0.86]; =0.04).

Conclusions: SVEP1 improved the predictive performance of conventional models, including known clinical parameters with or without NT-proBNP, to predict future MACE in patients with hypertrophic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.124.012343DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
16
clinical predictors
12
patients hypertrophic
12
svep1
9
plasma svep1
8
svep1 levels
8
cardiovascular events
8
clinical
8
models including
8
nt-probnp
8

Similar Publications

Background: Hypertrophic cardiomyopathy is the most common genetic cardiomyopathy and causes major adverse cardiovascular events (MACE). SVEP1 (Sushi, von Willebrand factor type A, epidermal growth factor, and pentraxin domain containing 1) is a large extracellular matrix protein that is detectable in the plasma. However, it is unknown whether adding plasma SVEP1 levels to clinical predictors including NT-proBNP (N-terminal pro-B-type natriuretic peptide) improves the prognostication in patients with hypertrophic cardiomyopathy.

View Article and Find Full Text PDF

CCL2-CCR2 axis in cardiovascular disease: Research advances and challenges.

Sci Bull (Beijing)

January 2025

Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, 127 Changle West Road, Xi'an 710032, China. Electronic address:

View Article and Find Full Text PDF

Recent development in CRISPR-Cas systems for cardiac disease.

Prog Mol Biol Transl Sci

January 2025

Department of Microbiology, Gargi College, University of Delhi, New Delhi, India. Electronic address:

The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies.

View Article and Find Full Text PDF

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Left ventricular outflow tract (LVOT) obstruction is mostly caused by hypertrophic obstructive cardiomyopathy and subaortic stenosis. Rarely, malignancy can lead to dynamic LVOT obstruction and has only been sporadically documented. We present the first case of dynamic and/or nearly fixed LVOT obstruction caused by a cardiac myxoid spindle cell sarcoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!