Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown. The aim of this study was to evaluate the O-A angle how to influence the aortic valve biomechanical properties.
Methods: The current study employed a novel fluid-structure interaction (FSI) model that integrates the Lattice Boltzmann method (LBM) and the finite element method (FEM) to investigate the biomechanical effect of the O-A angle on the aortic valve under LVAD support. The biomechanical status of the aortic valve was evaluated at three different O-A angles (45, 90 and 135 degrees) and. four indicators, including stress distribution, the mean stress, the axial hemodynamic force (AHF) and the wall shear stress (WSS) distribution were evaluated at three timepoints (28, 133, and 266 ms).
Results: The results showed that the stress and the high-stress region on the aortic leaflets increased as the O-A angle increased and as the difference between the left ventricular pressure (LVP) and aortic pressure (AP) increased. And the aortic insufficiency was observed at the 28 ms (systolic phase) in the 135-degree O-A angle. During the systolic phase, significant fluctuation in the mean stress was observed when the O-A angle was 90 or 135 degrees. During the diastolic phase, the mean stress increased in the three O-A angle conditions when the difference between the LVP and AP increased. Regarding to the AHF, an obvious fluctuation was observed during the systolic phase (0-100 ms) in the 135-degree O-A angle. During the diastolic phase, the AHF increased in the three O-A angle conditions when the difference between the LVP and AP increased. For the WSS distribution evaluation, the WSS was increased when the O-A angle increased. At 28 ms (the systolic phase), a high WSS was located on the free edge of the leaflets, and the deformed leaflets were observed in the 135-degree O-A angle. And at 133 ms (the rapid diastolic phase), a high WSS was observed at the free edge of the leaflets when the O-A angles were 45 or 90 degrees, and at both free edge and belly of the leaflets in the 135-degree O-A angle.
Conclusions: The O-A angle is closely associated with the biomechanical status of the aortic valve under LVAD support. A large O-A angle caused high stress and WSS on the aortic leaflets, as well as broad stress and WSS distribution, thus leading to deformed leaflets and retrograde flow. Therefore, optimization of the O-A angle will favor to maintain aortic valve function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740063 | PMC |
http://dx.doi.org/10.21037/jtd-24-1650 | DOI Listing |
J Thorac Dis
December 2024
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown.
View Article and Find Full Text PDFArch Orthop Trauma Surg
August 2024
Department of Orthopaedic Surgery, Woodlands Health Campus, Singapore, Singapore.
Introduction: Treatment of proximal humerus fractures remains controversial. Understanding the factors that can affect the long-term functional outcomes can aid with management choices. This primary aim of this paper is to evaluate the association of radiographic parameters with functional outcomes.
View Article and Find Full Text PDFArthrosc Sports Med Rehabil
June 2024
Department of Orthopedics, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey.
Purpose: To evaluate whether unrepaired interportal capsulotomy presents with capsular defect on magnetic resonance imaging (MRI) 5 years after primary hip arthroscopy and to determine its effect on functional results and findings of osteoarthritis on radiographs or MRI scans.
Methods: Patients with femoroacetabular impingement (without arthritis or dysplasia) were retrospectively reviewed after arthroscopic labral repair or debridement and femoroplasty through interportal capsulotomy without closure. Patients were assessed preoperatively and at a minimum of 5 years postoperatively using patient-reported outcomes (Hip Outcome Score-Activities of Daily Living scale, modified Harris Hip Score, and visual analog scale pain score), radiographic measures, and MRI scans.
Magn Reson Chem
October 2024
Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
Hydrogen bonding is a crucial feature of biomolecules, but its characterization in glycans dissolved in aqueous solutions is challenging due to rapid hydrogen exchange between hydroxyl groups and HO. In principle, the scalar (J) coupling constant can reveal the relative orientation of the atoms in the molecule. In contrast to J-coupling through H-bonds reported in proteins and nucleic acids, research on J-coupling through H-bonds in glycans dissolved in water is lacking.
View Article and Find Full Text PDFInvest Radiol
December 2024
From the Department of Radiology, Boston Children's Hospital, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.); and Harvard Medical School, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.).
Objectives: The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!