Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care. Next-generation multifunctional wound dressings feature antibacterial properties, pain relief, biocompatibility, drug delivery, flexibility, and exudate absorption. Today, biomimetic models, tissue engineering, and synthetic skin are integrated with emerging wound healing technologies, offering a new perspective on wound management. Based on the classification model of multifunctional and advanced wound dressings, various AI-assisted wound management technologies are also highly efficient. The primary goals of advanced wound dressing technologies include faster wound healing, prevention of microbial contamination, preservation of skin aesthetics, reduction of treatment costs, and increased patient comfort. The latest technologies in this field not only promote faster healing and the treatment of deep wounds but also emphasize continuous control and monitoring of the healing process. These screenable wound dressings can be smart sensors to detect wound status based on parameters such as pH, moisture, temperature, and oxygen levels. This enables wound status monitoring and appropriate treatment responses. These technologies facilitate wound observation and monitoring, as well as the evaluation and control of the healing process through various models and strategies, such as the fabrication of functional nanomaterials, computer algorithms, and artificial intelligence. This review presents an overview of the most prominent new technologies in wound dressings, along with their innovative approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742314 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e41465 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.
View Article and Find Full Text PDFStomatologiia (Mosk)
January 2025
Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia.
Objective: Study on the impact of medical wound dressing compositions on reference strains of microorganisms in vitro conditions.
Materials And Methods: The study compared the antimicrobial activity of three types of dressing materials (DM): iodoform gauze bandage, DM with furagin and sodium alginate, DM from hydrogel with dimexide and silver nitrates. Gauze bandage with chlorhexidine was used as a control.
Heliyon
January 2025
Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran.
Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care.
View Article and Find Full Text PDFBackground And Aims: This systematic review and meta-analysis evaluate the efficacy of moist versus non-moist dressings for split-thickness skin graft (STSG) donor sites, focusing on time to healing, pain management, and adverse events to guide clinical practice.
Methods: A comprehensive literature search was conducted across databases including Ovid/MEDLINE, Embase, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, and Scopus up to November 28, 2023. The study adhered to PRISMA guidelines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!