Genetic engineering technology can achieve specific gene therapy for a variety of diseases, but the current strategy still has some flaws, such as a complex system, single treatment, and large implantation trauma. Herein, the genetic engineering injectable hydrogels were constructed by ultrasonic technology for the first time to realize in vivo ultrasound-triggered in situ cross-linking and cell gene transfection, and finally complete in situ gene therapy to promote bone reconstruction. First, ultrasound-triggered calcium release was used to activate transglutaminase and catalyze the transamidation between fibrinogen. Simultaneously, liposome loaded with Zinc-finger E-box-binding homeobox 1 (ZEB1) gene plasmid (Lip-ZEB1) was combined to construct an ultrasound-triggered in situ cross-linked hydrogels that can deliver Lip-ZEB1. Second, ultrasound-triggered injectable hydrogel introduced ZEB1 gene plasmid into endothelial cell genome through Lip-ZEB1 sustained release, and then acted on the ZEB1/Notch signal pathway of cells, promoting angiogenesis and local bone reconstruction of osteoporosis through genetic engineering. Overall, this strategy provides an advanced gene delivery system through genetic engineered ultrasound-triggered injectable hydrogels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740919 | PMC |
http://dx.doi.org/10.34133/research.0221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!