Nitrofuran and pyrazolopyrimidine-based compounds possess a broad antimicrobial spectrum including Gram-positive and Gram-negative bacteria. In the present work, a series of conjugates of these scaffolds was synthesized and evaluated for antimicrobial activity against and methicillin-resistant (MRSA). Many compounds showed MIC values of ≤2 μg ml, with compound 35 demonstrating excellent activity (MICs: 0.7 and 0.15 μg ml against and MRSA, respectively) and safety up to 50 μg ml in HepG2 cells. Compound 35 also exhibited no hemolytic activity, biofilm eradication, and effectiveness against efflux-pump-overexpressing strains (NorA, TetK, MsrA) without resistance development. It showed synergistic effects with vancomycin () and rifampicin (MRSA). Mechanistic studies revealed that compound 35 exhibits good membrane-targeting abilities, as evidenced by DAPI/PI staining and scanning electron microscopy (SEM). In an intracellular model, it reduced bacterial load efficiently in both and MRSA strains. With a strong profile, compound 35 demonstrated favorable oral pharmacokinetics at 30 mg kg and potent anti-MRSA activity, highlighting its potential against antibiotic-resistant infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740095PMC
http://dx.doi.org/10.1039/d4md00826jDOI Listing

Publication Analysis

Top Keywords

discovery biological
4
biological evaluation
4
evaluation nitrofuranyl-pyrazolopyrimidine
4
nitrofuranyl-pyrazolopyrimidine hybrid
4
hybrid conjugates
4
conjugates potent
4
potent antimicrobial
4
antimicrobial agents
4
agents targeting
4
targeting methicillin-resistant
4

Similar Publications

More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance.

View Article and Find Full Text PDF

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Purpose: To study the association between clinicopathologic characteristics of ductal carcinoma in situ (DCIS) and risk of subsequent invasive breast cancer (IBC).

Methods: We conducted a case-control study nested in a multicenter, population-based cohort of 8175 women aged ≥ 18 years with DCIS diagnosed between 1987 and 2016 and followed for a median duration of 83 months. Cases (n = 497) were women with a first diagnosis of DCIS who developed a subsequent IBC ≥ 6 months later; controls (2/case; n = 959) were matched to cases on age at and calendar year of DCIS diagnosis.

View Article and Find Full Text PDF

New approaches to secondary metabolite discovery from anaerobic gut microbes.

Appl Microbiol Biotechnol

January 2025

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.

View Article and Find Full Text PDF

Comparison between ZenoTOF 7600 system and QTOF for plant metabolome: an example of metabolomics applied to coffee leaves.

Metabolomics

January 2025

Bioanalysis and Drug Discovery, Faculty of Pharmacy, RD3 Unit of Pharmacognosy, Université Libre de Bruxelles, Bd du Triomphe, Campus Plaine, CP 205/09, 1050, Brussels, Belgium.

Introduction: ZenoTOF is new class of high-resolution mass spectrometer that combines resolution and sensitivity. This mass spectrometer is well designed to perform metabolomics.

Methods: In this context, we compared the performance of ZenoTOF 7600 system (Sciex) with QTOF6520 (Agilent Technologies) through the leaf metabolome analysis of two Coffea species, namely C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!