Hepatocellular carcinoma (HCC) stands as the most prevalent form of primary liver cancer and is frequently linked to underlying chronic liver conditions such as hepatitis B, hepatitis C, and cirrhosis. Despite the progress achieved in the field of oncology, HCC remains a significant clinical challenge, primarily due to its typically late-stage diagnosis and the complex and multifaceted nature of its tumor biology. These factors contribute to the limited effectiveness of current treatment modalities and result in poor patient prognosis. Emerging research has underscored the vital role of microRNAs (miRNAs)-small, non-coding RNA molecules that play a pivotal part in the post-transcriptional regulation of gene expression. These miRNAs are integral to a wide array of cellular functions, including proliferation, apoptosis, and differentiation, and their dysregulation is closely associated with the pathogenesis of various cancers, notably HCC. A major focus in recent studies has been on the epigenetic regulation of miRNAs through methylation, a key mechanism that modulates gene expression. This process, involving the addition of methyl groups to CpG islands in the promoter regions of miRNA genes, can result in either gene silencing or activation, influencing the expression of oncogenes and tumor suppressor genes. Such alterations have profound implications for tumor growth, metastasis, and resistance to treatment. Evidence suggests that aberrant miRNA methylation can serve as a powerful biomarker for early detection and prognosis in HCC and may present novel opportunities for therapeutic intervention. This review aims to provide a comprehensive overview of the current landscape of miRNA methylation in HCC, elucidating its significance in the molecular mechanisms of liver cancer and examining its potential for clinical application. By exploring the diagnostic and therapeutic potential of miRNA methylation, we seek to highlight its value in enhancing personalized treatment strategies and improving patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742574PMC
http://dx.doi.org/10.1016/j.ncrna.2024.12.002DOI Listing

Publication Analysis

Top Keywords

mirna methylation
12
hepatocellular carcinoma
8
liver cancer
8
gene expression
8
methylation
5
hcc
5
targeting microrna
4
microrna methylation
4
methylation innovative
4
innovative approaches
4

Similar Publications

Hepatocellular carcinoma (HCC) stands as the most prevalent form of primary liver cancer and is frequently linked to underlying chronic liver conditions such as hepatitis B, hepatitis C, and cirrhosis. Despite the progress achieved in the field of oncology, HCC remains a significant clinical challenge, primarily due to its typically late-stage diagnosis and the complex and multifaceted nature of its tumor biology. These factors contribute to the limited effectiveness of current treatment modalities and result in poor patient prognosis.

View Article and Find Full Text PDF

Gliomas, highly aggressive tumors of the central nervous system, present overwhelming challenges due to their heterogeneity and therapeutic resistance. Glioblastoma multiforme (GBM), the most malignant form, underscores this clinical urgency due to dismal prognosis despite aggressive treatment regimens. Recent advances in cancer research revealed signaling pathways and epigenetic mechanisms that intricately govern glioma progression, offering multifaceted targets for therapeutic intervention.

View Article and Find Full Text PDF

Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs.

Phytomedicine

January 2025

Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.. Electronic address:

Background: Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!