Unlabelled: As sequencing costs decrease, short-read and long-read technologies are indispensable tools for uncovering the genetic drivers behind bacterial pathogen resistance. This study explores the differences between the use of short-read (Illumina) and long-read (Oxford Nanopore Technologies, ONT) sequencing in detecting antimicrobial resistance (AMR) genes in ESKAPE pathogens ( and ). Utilizing a dataset of 1,385 whole genome sequences and applying commonly used bioinformatic methods in bacterial genomics, we assessed the differences in genomic completeness, pangenome structure, and AMR gene and point mutation identification. Illumina presented higher genome completeness, while ONT identified a broader pangenome. Hybrid assembly outperformed both Illumina and ONT at identifying key AMR genetic determinants, presented results closer to Illumina's completeness, and revealed ONT-like pangenomic content. Notably, Illumina consistently detected more AMR-related point mutations than its counterparts. This highlights the importance of method selection based on research goals. Differences were also observed for specific gene classes and bacterial species, underscoring the need for a nuanced understanding of technology limitations. Overall, this study reveals the strengths and limitations of each approach, advocating for the use of Illumina for common AMR analysis; ONT for studying complex genomes and novel species, and hybrid assembly for a more comprehensive characterization, leveraging the benefits of both technologies.

Impact Statement: This study provides a comprehensive comparison of short-read (Illumina) and long-read (Oxford Nanopore Technologies, ONT) sequencing technologies in the context of antimicrobial resistance (AMR) detection in ESKAPE pathogens. By analyzing a large dataset of 1,385 whole genome sequences, the research offers valuable insights into the strengths and limitations of each approach, as well as the benefits of the novel approach of hybrid assembly. These findings have broad utility across microbiology, genomics, and infectious disease research. In particular, they apply to the work of researchers and clinicians dealing with AMR surveillance, investigation into outbreaks, and bacterial genome analysis. Given the nuance with which technological differences in genomic completeness, pangenome structure, and AMR determinant detection have been explored in this study, it is a good basis for informed method selection for future research. While the output represents an incremental advance, its significance lies in its practical implications. It thus enables researchers to take more reasonable decisions in designing genomic studies of bacterial pathogens by showing the complementarity of various sequencing approaches and their specific strengths. This could lead to more accurate and comprehensive detection of AMR, which would contribute ultimately to improved antibiotic stewardship and public health strategies.

Data Summary: The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files.

Repositories: All the sequences used for this study are publicly accessible from GenBank, and their individual IDs are disclosed in Supplementary Table 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741274PMC
http://dx.doi.org/10.1101/2025.01.08.631980DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
12
eskape pathogens
12
hybrid assembly
12
genes eskape
8
short-read illumina
8
illumina long-read
8
long-read oxford
8
oxford nanopore
8
nanopore technologies
8
technologies ont
8

Similar Publications

The Canadian Genomics Research and Development Initiative for Antimicrobial Resistance (GRDI-AMR) uses a genomics-based approach to understand how health care, food production and the environment contribute to the development of antimicrobial resistance. Integrating genomics contextual data streams across the One Health continuum is challenging because of the diversity in data scope, content and structure. To better enable data harmonization for analyses, a contextual data standard was developed.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.

Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.

View Article and Find Full Text PDF

Introduction: Appropriate antibiotic use requires using the right antibiotic, at the right dose, for the right duration, and at the right time. Drug-resistant diseases cause numerous deaths globally a year, and antibiotic stewardship is a cornerstone in fighting antibiotic resistance. This study focuses on tracking the antibiotic prescribing practices in Palestine and improving future antibiotic prescribing.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance remains a global threat with increasing morbidity and mortality rates. The aim of this study was to identify the antimicrobial resistance trends among ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolated from clinical samples at a Health Practice and Research Hospital over five years.

View Article and Find Full Text PDF

Introduction: The emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is a growing public health concern. The objective of this study was to determine the prevalence and multi-drug resistant (MDR) profiles of MRSA in goats in Bangladesh.

Methodology: A total of 150 samples from goats comprised of rectal swab (n = 50), nasal swab (n = 50), and milk (n = 50) were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!