Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C. Mechanistically, UFMylation does not regulate viral RNA translation or RNA replication but instead affects a later stage of the viral lifecycle. We identified novel interactions between UFL1, and several viral proteins involved in orthoflavivirus virion assembly, including NS2A, NS2B-NS3, and Capsid. These findings establish UFMylation as a previously unrecognized post-translational modification system that promotes orthoflavivirus infection, likely through modulation of viral assembly. This work expands our understanding of the post-translational modifications that control orthoflavivirus infection and identifies new potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741389PMC
http://dx.doi.org/10.1101/2025.01.09.632082DOI Listing

Publication Analysis

Top Keywords

promotes orthoflavivirus
8
post-translational modifications
8
post-translational modification
8
modification system
8
orthoflavivirus infection
8
ufmylation
6
orthoflavivirus
5
viral
5
ufmylation promotes
4
orthoflavivirus infectious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!