The human gut microbiota (HGM) is a complex ecosystem subtly dependent on the interplay between hundreds of bacterial species and numerous metabolites. Dietary phenols, whether ingested (e.g., plant-derived guaiacol, mequinol, or resveratrol) or products of bacterial fermentation (e.g., -cresol), have been attributed with influencing bacterial growth and host health. They are cleared by phase II metabolism, one form utilizing β-d-glucuronidation, but encounter bacterially derived glucuronidases capable of hydrolyzing them to release their phenolic and glucuronic acid moieties with potential effects on host cells or the surrounding bacterial population. Tools to enable the detailed study of their activity are currently lacking. Syntheses of β-d-glucuronides from methyl 1,2,3,4 tetra-acetyl β-d-glucopyranosyluronate by direct glycosylation with 2-, 3-, or 4-methoxy- and 4-fluorophenol acceptors employing trimethylsilyl triflate catalysis are reported. Yields (methoxy series) were modest. An improved route from methyl 1,2,3,4-tetra-acetyl β-d-glucopyranosyluronate via selective anomeric deprotection (-methyl piperazine) and conversion to an α-trichloroacetimidate glycosyl donor was employed. Coupling with 2- and 3-methoxyphenol acceptors and deprotection provided 2- and 3-methoxyphenyl β-d-glucuronides in 2-fold improved overall yield. These naturally occurring methoxyphenyl glucuronides augment available model substrates of dietary glucuronides, which include 3- and 4'-linked resveratrol. The use of model glucuronides as substrates was illustrated in studies of β-d-glucuronidase activity employing cell lysates of 9 species of HGM (), revealing distinct outcomes. Contrasting effects on bacterial growth were also observed between the free phenolic components, their respective glucuronides, and glucuronic acid. The glucuronide of 4-fluorophenol provided sensitive and background-free detection of β-glucuronidase activity using F NMR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740244PMC
http://dx.doi.org/10.1021/acsomega.4c09036DOI Listing

Publication Analysis

Top Keywords

human gut
8
bacterial growth
8
glucuronic acid
8
bacterial
5
synthetic β-d-glucuronides
4
β-d-glucuronides substrates
4
substrates exploring
4
exploring glucuronide
4
glucuronide degradation
4
degradation human
4

Similar Publications

Context: Prebiotics are often added to infant formulas to mimic the benefits of oligosaccharides found in human milk.

Objective: This systematic review and meta-analysis evaluated the effects of prebiotic-supplemented cow's milk-based formula on the gut microbiota, gut environment, growth parameters, and safety and tolerance in infants ≤6 months old, compared with a standard formula or human milk comparator.

Data Sources: Searches were performed in the PubMed, Embase, Cochrane Central Register of Controlled Trials, and ProQuest Dissertations & Theses databases.

View Article and Find Full Text PDF

New approaches to secondary metabolite discovery from anaerobic gut microbes.

Appl Microbiol Biotechnol

January 2025

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.

View Article and Find Full Text PDF

Bacteria as Precision Tools for Cancer Therapy.

Microb Biotechnol

January 2025

Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.

The discovery at the end of the 20th century of genes that induce cell death revolutionised the biocontaintment of genetically manipulated bacteria for environmental or agricultural applications. These bacterial 'killer' genes were then assayed for their potential to target and control malignant cells in human cancers. The identification of the bacteriomes in different human organs and tissues, coupled with the observation that bacteria tend to accumulate near tumours, has opened new avenues for anti-cancer strategies.

View Article and Find Full Text PDF

Gut microbial composition associated with risk of premature aging in women with Yin-deficiency constitution.

Front Cell Infect Microbiol

January 2025

National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.

Background: Yin-deficiency constitution (YinDC) refers to a traditional Chinese medicine concept, characterized by an imbalance state that includes an imbalance in the gut microbiota, resulting from a relative deficiency of Yin fluids within the body. In recent years, it has become apparent that the composition and structure of the gut microbiota play a significant role in the aging process. The imbalance of gut microbiota in YinDC may accelerate the aging process.

View Article and Find Full Text PDF

The virome, composed of viruses inhabiting diverse ecosystems, significantly influences microbial community dynamics and host health. The phenol-chloroform DNA extraction protocol for viromes, though effective, is time-intensive and requires the use of multiple toxic chemicals. This study introduces a streamlined, scalable protocol for DNA extraction using a commercially-available kit as an alternative, assessing its performance against the phenol-chloroform method across human fecal, mouse fecal, and soil samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!