Metabolomics and epigenomics have been used to develop 'ageing clocks' that assess biological age and identify 'accelerated ageing'. While metabolites are subject to short-term variation, DNA methylation (DNAm) may capture longer-term metabolic changes. We aimed to develop a hybrid DNAm-metabolic clock using DNAm as metabolite surrogates ('DNAm-metabolites') for age prediction. Within the UK Airwave cohort (n = 820), we developed DNAm metabolites by regressing 594 metabolites on DNAm and selected 177 DNAm metabolites and 193 metabolites to construct 'DNAm-metabolic' and 'metabolic' clocks. We evaluated clocks in their age prediction and association with noncommunicable disease risk factors. We additionally validated the DNAm-metabolic clock for the prediction of age and health outcomes in The Irish Longitudinal Study of Ageing (TILDA, n = 488) and the Health and Retirement Study (HRS, n = 4018). Around 70% of DNAm metabolites showed significant metabolite correlations (Pearson's r: > 0.30, p < 10) in the Airwave test set and overall stronger age associations than metabolites. The DNAm-metabolic clock was enriched for metabolic traits and was associated (p < 0.05) with male sex, heavy drinking, anxiety, depression and trauma. In TILDA and HRS, the DNAm-metabolic clock predicted age (r = 0.73 and 0.69), disability and gait speed (p < 0.05). In HRS, it additionally predicted time to death, diabetes, cardiovascular disease, frailty and grip strength. DNAm metabolite surrogates may facilitate metabolic studies using only DNAm data. Clocks built from DNAm metabolites provided a novel approach to assess metabolic ageing, potentially enabling early detection of metabolic-related diseases for personalised medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/acel.14484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!