Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration. In this study, we demonstrate a TFLN metasurface platform that leverages guided mode resonance for efficient phase modulation, achieving a modulation amplitude of 0.063 rad at a frequency of 100 kHz. We exploit the resonance in the TFLN waveguide and obtain a high-quality factor of 166 at a resonant wavelength of 795.8 nm. Using the fabricated modulator, we achieve an optical rotation angle measurement sensitivity of 4 × 10 rad Hz with the modulation. Compared to conventional bulky modulators, the modulator fabricated in this study realizes more than 90% reduction in volume. This study provides a feasible approach for developing miniaturized integrated atomic magnetometers to achieve ultrahigh sensitivity through optical modulation techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr04794j | DOI Listing |
Neoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFACS Sens
January 2025
Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.
View Article and Find Full Text PDFCancer Biol Med
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N-methyladenosine (mA), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
January 2025
Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Emilia-Romagna, Italy.
In the wild, stressors occur with varying likelihood throughout the day, leading animals to evolve plastic stress responses that exhibit circadian rhythmicity. In mammals, studies have revealed that the circadian plasticity of stress response may differ with age. However, such developmental effects have been largely overlooked in other vertebrate groups.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!