Opto-Laser-Responsive Smart NanoGel with Mild Hyperthermia, Vascularization, and Anti-Inflammatory Potential for Boosting Hard-to-Heal Wounds in a Diabetic Mice Model.

Mol Pharm

An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.

Published: January 2025

It is well known that impaired wound healing associated with diabetes mellitus has led to a challenging problem as well as a global economic healthcare burden. Conventional wound care therapies like films, gauze, and bandages fail to cure diabetic wounds, thereby demanding a synergistic and promising wound care therapy. This investigation aimed to develop a novel, greener synthesis of a laser-responsive silver nanocolloid (LR-SNC) prepared using hyaluronic acid as a bioreductant. The prepared LR-SNC was embedded into a stimuli-responsive gel (LR-SNC gel) for easy application to the wound region. The physicochemical characterization of LR-SNC revealed a nanometric hydrodynamic particle size of 25.59 ± 0.72 nm with an -31.8 ± 0.7 mV surface ζ-potential. The photothermal conversion efficiency of LR-SNC was observed up to 62.9 ± 0.1 °C. evaluation of LR-SNC with and without NIR laser irradiation exhibited >70% cell viability, confirming its cytocompatibility for human keratinocyte cells. The scratch assay showed significant wound closure of 75.50 ± 0.02%. Further, the addition of cytocompatible LR-SNC into an gel followed by laser irradiation resulted in substantial wound closure (86.69 ± 2.48%) in a diabetic wound-bearing mouse. Histological evaluation demonstrated salient features of the healed wounds, such as increased neovascularization, collagen density, migration of keratinocytes, as well as growth of hair follicles. Additionally, the findings showed a decrease in the levels of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and enhanced angiogenesis gene expression (VEGF and CD31), thereby healing the diabetic wound efficiently. The present study confirmed the potential role of silver nanocolloids followed by laser irradiation in treating diabetic wound mouse models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.4c01466DOI Listing

Publication Analysis

Top Keywords

laser irradiation
12
wound
8
wound care
8
lr-snc gel
8
wound closure
8
diabetic wound
8
lr-snc
7
diabetic
5
opto-laser-responsive smart
4
smart nanogel
4

Similar Publications

Ultrafine fiber-mediated transvascular interventional photothermal therapy using indocyanine green for precision embolization treatment.

Biomater Sci

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, China.

Photothermal treatment has attracted immense interest as a promising approach for biomedical applications such as cancer ablation, yet its effectiveness is often limited by insufficient laser penetration and challenges in achieving efficient targeting of photothermal agents. Here we developed a transvascular interventional photothermal therapy (Ti-PTT), which employed a small-sized microcatheter (outer diameter: 0.60 mm, 1.

View Article and Find Full Text PDF

A tactfully designed photothermal agent collaborating with ascorbic acid for boosting maxillofacial wound healing.

Natl Sci Rev

February 2025

Department of Oral Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University. State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases. Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.

Maxillofacial injuries that may cause severe functional and aesthetic damage require effective and immediate management due to continuous exposure to diverse microbial populations. Moreover, drug resistance, biofilm formation, and oxidative stress significantly impede timely bacterial removal and immune function, making the exploration of advanced materials for maxillofacial wound healing an appealing yet highly challenging task. Herein, a near-infrared photothermal sterilization agent was designed, encapsulated with liposomes and coated with ascorbic acid known for its antioxidant and immune-regulatory functions.

View Article and Find Full Text PDF

Neuronal Electrical Activity in Neuronal Networks Induced by a Focused Femtosecond Laser.

ACS Omega

January 2025

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

The spatial propagation of neuronal activity within neuronal circuits, which is associated with brain functions, such as memory and learning, is regulated by external stimuli. Conventional external stimuli, such as electrical inputs, pharmacological treatments, and optogenetic modifications, have been used to modify neuronal activity. However, these methods are tissue invasive, have insufficient spatial resolution, and cause irreversible gene modifications.

View Article and Find Full Text PDF

While nanozymes are commonly employed in nanocatalytic therapy (NCT), the efficacy of NCT is hampered by the limited catalytic activity of nanozymes and the intricate tumor microenvironment (TME). In this work, we design a high-efficiency nanozyme with NIR-II photothermal property for the mild hyperthermia-augmented NCT. In order to endow a single-component nanomaterial the ability to simultaneously catalyze and exhibit NIR-II photothermal properties, a straightforward template method is utilized to fabricate sulfur vacancies (V)-doped CoS nanocages.

View Article and Find Full Text PDF

Opto-Laser-Responsive Smart NanoGel with Mild Hyperthermia, Vascularization, and Anti-Inflammatory Potential for Boosting Hard-to-Heal Wounds in a Diabetic Mice Model.

Mol Pharm

January 2025

An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.

It is well known that impaired wound healing associated with diabetes mellitus has led to a challenging problem as well as a global economic healthcare burden. Conventional wound care therapies like films, gauze, and bandages fail to cure diabetic wounds, thereby demanding a synergistic and promising wound care therapy. This investigation aimed to develop a novel, greener synthesis of a laser-responsive silver nanocolloid (LR-SNC) prepared using hyaluronic acid as a bioreductant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!