Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/mgr.MEDGASRES-D-24-00089 | DOI Listing |
Pharmacol Rep
January 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
The purpose of this work was to create and assess Lornoxicam (LOR) loaded Novasomes (Novas) for the efficient treatment of ulcerative colitis. The study was performed using a 2 factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: Surface Active agent (SAA) type (), LOR concentration (), and SAA: Oleic acid ratio ().
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
January 2025
Imannuel Kant Baltic Federal University, Kaliningrad, Russia.
Objective: To evaluate the concentrations of CC-chemokines and stable metabolites of nitric oxide (NO) and endothelin-1 (ET-1) in patients with atherothrombotic (AT) and cardioembolic (CE) subtypes of ischemic stroke (IS) in the acute period.
Material And Methods: Sixty patients diagnosed with IS in the carotid basin were examined. Group 1 included 30 patients with AT, group 2 - 30 patients with CE subtype of IS.
World J Psychiatry
January 2025
Department of Neurology, Qinzhou Second People's Hospital, Qinzhou 535000, Guangxi Zhuang Autonomous Region, China.
Background: Acute ischemic stroke (AIS) is an abrupt blood flow cessation to a specific brain region within a vascular zone, causing a subsequent decline in neurological capabilities. Stent thrombectomy is a recently established technique for treating AIS. It provides the benefits of being a relatively simple and safe procedure, capable of partially enhancing a patient's condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!