Gene function revealed at the moment of sitochastic gene silencing.

Commun Biol

Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.

Published: January 2025

Gene expression is a dynamic and stochastic process characterized by transcriptional bursting followed by periods of silence. Single-cell RNA sequencing (scRNA-seq) is a powerful tool to measure transcriptional bursting and silencing at the individual cell level. In this study, we introduce the single-cell Stochastic Gene Silencing (scSGS) method, which leverages the natural variability in single-cell gene expression to decipher gene function. For a target gene g under investigation, scSGS classifies cells into transcriptionally active (g + ) and silenced (g-) samples. It then compares these cell samples to identify differentially expressed genes, referred to as SGS-responsive genes, which are used to infer the function of the target gene g. Analysis of real data demonstrates that scSGS can reveal regulatory relationships up- and downstream of target genes, circumventing the survivorship bias that often affects gene knockout and perturbation studies. scSGS thus offers an efficient approach for gene function prediction, with significant potential to reduce the use of genetically modified animals in gene function research.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-025-07530-0DOI Listing

Publication Analysis

Top Keywords

gene function
16
gene
11
gene silencing
8
gene expression
8
transcriptional bursting
8
function target
8
target gene
8
function revealed
4
revealed moment
4
moment sitochastic
4

Similar Publications

Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life.

Wiley Interdiscip Rev RNA

January 2025

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.

Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.

View Article and Find Full Text PDF

Anti-correlation of KLRG1 and PD-1 expression in human tumor CD8 T cells.

Oncotarget

January 2025

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.

View Article and Find Full Text PDF

More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance.

View Article and Find Full Text PDF

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!