Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release. Consequently, these changes culminate in an enhancement of cycling performance, translating to an initial specific capacity of 210 mAh g and a 95.3% capacity retention after 100 cycles. These interesting findings deepen the understanding of boron doping and shed light on the design of better lithium cathode materials on an applicable scale.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409743DOI Listing

Publication Analysis

Top Keywords

cathode materials
12
boron doping
8
tetrahedral site
8
site ncm811
8
tm-o-b bonds
8
insights homogeneous
4
homogeneous bulk
4
bulk boron
4
doping tetrahedral
4
ncm811 cathode
4

Similar Publications

Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.

View Article and Find Full Text PDF

Management of refractory ventricular fibrillation (VF) in patients with implantable implantable cardioverter defibrillator (ICD) presents a therapeutic challenge. We present a case of pediatric refractory ventricular tachycardia (VT)/Torsade de Pointe managed effectively with bilateral stellate ganglion block (SGB) with a long-acting local anesthetic for 18 days as a bridge to more definitive surgical management.

View Article and Find Full Text PDF

Electroacupuncture (EA) is one of the most commonly used methods in acupuncture and has a good effect on pain, depression, sensory movement disorders, and other diseases. The effectiveness of EA is influenced by many factors, such as the accuracy of acupoint selection, the duration and course of EA treatment, and EA parameters. However, it has rarely been discussed whether the positive and negative electrodes of the EA instrument with acupoints at different locations and distances have an effect on the curative effect.

View Article and Find Full Text PDF

The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.

View Article and Find Full Text PDF

A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!