Penehyclidine hydrochloride activates PARK2 and modulates ubiquitination of AIFM1 to rescue renal tubular injury in diabetic kidney disease.

J Pharmacol Sci

The Fourth Hospital of Changsha, Department of Anesthesiology, 410006, Changsha, Hunan Province, China. Electronic address:

Published: February 2025

Background: Renal tubular injury (RTI) is one of the key characteristics of diabetic nephropathy (DN). Penehyclidine hydrochloride (PHC) was an anticholinergic drug with renoprotective effects, but its specific mechanism in the treatment of DN was still unclear.

Methods: We treated different diabetic mouse models and high glucose-induced RTI models by PHC. Histological analyses were performed using flow cytometry and staining, and ELISA evaluated the ROS, apoptosis, and related markers under different treatments. The molecular interactions were analyzed by ChIP, dual-luciferase reporter, and CoIP.

Results: PHC alleviated RTI by activating mitophagy and inhibiting apoptosis, and the protective effect could be rescued by PARK2 knockdown. Nrf2 bound to the promoter region of PARK2 and promoted its expression. PHC reduced the level of apoptosis by reducing the degree of nuclear translocation of AIFM1, which was rescued by PARK2 knockdown. PARK2 knockdown reduced the non-degradative ubiquitination of AIFM1, thus promoting its nuclear translocation and ultimately facilitating renal tubular cells (RTCs) apoptosis. The over-expression of AIFM1 rescued the RTCs apoptosis antagonized by PHC.

Conclusions: PHC activated Nrf2 to up-regulate PARK2 transcription to induce mitophagy and inhibit apoptosis mediated by nuclear translocation of AIFM1 through promoting non-degradative ubiquitination of AIFM1, ultimately rescuing RTI in DN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2024.12.001DOI Listing

Publication Analysis

Top Keywords

ubiquitination aifm1
12
renal tubular
12
park2 knockdown
12
nuclear translocation
12
penehyclidine hydrochloride
8
tubular injury
8
rescued park2
8
translocation aifm1
8
aifm1 rescued
8
non-degradative ubiquitination
8

Similar Publications

Background: Renal tubular injury (RTI) is one of the key characteristics of diabetic nephropathy (DN). Penehyclidine hydrochloride (PHC) was an anticholinergic drug with renoprotective effects, but its specific mechanism in the treatment of DN was still unclear.

Methods: We treated different diabetic mouse models and high glucose-induced RTI models by PHC.

View Article and Find Full Text PDF

Background: Although mounting evidence supports that aberrant DNA methylation occurs in the hearts of patients with atrial fibrillation (AF), noninvasive epigenetic characterization of AF has not yet been defined.

Methods: We investigated DNA methylome changes in peripheral blood CD4 T cells isolated from 10 patients with AF relative to 11 healthy subjects (HS) who were enrolled in the DIANA clinical trial (NCT04371809) via reduced-representation bisulfite sequencing (RRBS).

Results: An atrial-specific PPI network revealed 18 hub differentially methylated genes (DMGs), wherein ROC curve analysis revealed reasonable diagnostic performance of DNA methylation levels found within CDK5R1 (AUC = 0.

View Article and Find Full Text PDF

Copper metabolism in cell death and autophagy.

Autophagy

August 2023

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.

Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions.

View Article and Find Full Text PDF

Cyclophosphamide-induced GPX4 degradation triggers parthanatos by activating AIFM1.

Biochem Biophys Res Commun

May 2022

Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA. Electronic address:

Cyclophosphamide is an alkylating agent used to treat a variety of cancers, including leukemia. Here, we show a previously unrecognized role of cyclophosphamide in triggering the protein degradation of glutathione peroxidase 4 (GPX4), a phospholipid hydroperoxidase that protects cells from oxidative damage. Mechanistically, we found that the ubiquitin-proteasome system, but not autophagy, mediates cyclophosphamide-induced degradation of GPX4 in human leukemia cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!