Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat. The major control methods which include the deployment of resistant wheat cultivars and application of chemical fungicides are losing efficiency as the fungus evolves. Natural antagonists of Pst may be an avenue for alternative and environmentally sustainable control of the disease in the field. Here we describe a novel fungus found growing on Pst pustules. We identified the fungus as a novel isolate of the plant endophyte Penicillium coffeae. We present a high-quality reference genome and a comparative transcriptomic analysis used to investigate how the fungus deploys its genes during growth amongst Pst spores. The gene content of the P. coffeae ANU01 genome is suggestive of a generalist that makes use of diverse substrates. An abundance of genes related to lipid, amino acid and carbohydrate metabolism indicate that P. coffeae ANU01 has evolved the ability to exploit nutrient stores in Pst urediniospores. P. coffeae ANU01 deploys a number of biosynthetic gene clusters during growth on Pst spores, potentially to inhibit urediniospores germination and halt defence responses. A number of genes encoding carbohydrate active enzymes are also highly upregulated, suggesting targeting and degradation of Pst urediniospores structures. Alongside carbohydrates, P. coffeae ANU01 appears to target spore lipids as a nutrient source, secreting several highly upregulated lipases. Our findings broaden the understanding of growth associated with rust spores as an evolutionary strategy and provide insight into the genes potentially required for this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2024.103956 | DOI Listing |
Fungal Genet Biol
January 2025
Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia. Electronic address:
Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!