Fibroblast growth factor 23 (FGF23) via its coreceptor αKlotho (KL) provides critical control of phosphate metabolism, which is altered in both rare and very common syndromes. However, the spatial-temporal mechanisms dictating kidney FGF23 functions remain poorly understood. Thus, developing approaches to modify specific FGF23-dictated pathways has proven problematic. Herein, wild type mice were injected with rFGF23 for one, four and 12h and kidney FGF23 bioactivity was determined at single cell resolution. Computational analysis identified distinct epithelial, endothelial, stromal, and immune cell clusters, with differential expressional analysis uniquely tracking FGF23 bioactivity at each time point. FGF23 actions were sex independent but critically relied upon constitutive KL expression mapped within proximal tubule (segments S1-S3) and distal convoluted tub/connecting tubule cell sub-populations. Temporal KL-dependent FGF23 responses drove unique and transient cellular identities, including genes in key MAPK-signaling and vitamin D-metabolic pathways via early- (transcription factor AP-1-related) and late-phase (initiation factor EIF2 signaling) transcriptional regulons. Combining ATACseq/RNAseq data from a cell line stably expressing KL with the in vivo scRNAseq pinpointed genomic accessibility changes in MAPK-dependent genes, including the identification of FGF23-dependent early growth factor-1 distal enhancers. Finally, we identified unexpected crosstalk between FGF23-mediated MAPK signaling and pro inflammatory TNF receptor activation via transcription factor NF-κB, which blocked FGF23 bioactivity in vitro and in vivo. Collectively, our findings have uncovered novel pathways at the single cell level that likely influence FGF23-dependent disease mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.kint.2024.12.014 | DOI Listing |
Oncotarget
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
January 2025
Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.
View Article and Find Full Text PDFBiol Open
January 2025
Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
Background: Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Interventional Radiology, University Hospital Strasbourg, Strasbourg, France.
Objectives: To evaluate the at-risk organs that require protection during percutaneous cryoablation (PCA) of renal tumours and the correlation with patient and target lesion characteristics, type of protective measure used and postoperative outcomes.
Materials And Methods: Single-centre retrospective review of patients with renal tumours who underwent PCA between 2008 and 2020. Final analysis included 374 tumours.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!