ExerGeneDB: A physical exercise-regulated differential gene expression database.

J Sport Health Sci

Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China. Electronic address:

Published: January 2025

Background: Exercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.

Methods: ExerGeneDB aggregated publicly available exercise-related sequencing datasets and subjected them to uniform quality control and preprocessing. The data, encompassing a variety of types, were organized into a specialized database of exercise-regulated genes. Notably, ExerGeneDB conducted differential analyses on this collected data, leveraging curated clinical information and accounting for important factors such as gender, age, and BMI.

Results: ExerGeneDB has assembled 1692 samples from rats and mice as well as 4492 human samples. It contains data from various tissues and organs, such as skeletal muscle, blood, adipose tissue, intestine, heart, liver, spleen, lungs, kidneys, brain, spinal cord, bone marrow, and bones. ExerGeneDB features bulk Ribonucleic acid sequencing (RNA-seq) (including non-coding RNA (ncRNA) and protein-coding RNA), microarray (including ncRNA and protein-coding RNA), and single cell RNA-seq data.

Conclusion: ExerGeneDB compiles and re-analyzes exercise-related data with a focus on clinical information. This has culminated in the creation of an interactive database for exercise regulation genes. The website for ExerGeneDB can be found at: https://exergenedb.com.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jshs.2025.101027DOI Listing

Publication Analysis

Top Keywords

exergenedb
8
exercise-regulated differential
8
multiple organs
8
clinical features
8
gender age
8
database exercise-regulated
8
ncrna protein-coding
8
protein-coding rna
8
exercise
6
database
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!