In order to improve predictability of outcome and reduce costly rounds of trial-and-error, machine learning models have been of increasing importance in the field of synthetic biology. Besides applications in predicting genome annotation, process parameters and transcription initiation frequency, such models have also been of help for pathway optimization. The latter is a common strategy in metabolic engineering and improves the production of a desirable compound by optimizing enzyme expression levels of the production pathway. However, engineering steps might not lead to sufficient improvement, and bottlenecks may remain hidden among the hundreds of metabolic reactions occurring in a living cell, especially if the production pathway is highly interconnected with other parts of the cell's metabolism. Here, we use the synthesis of chitooligosaccharides (COS) to show that the production from such complex pathways can be improved by using machine learning models and feature importance analysis to find new compounds with an impact on COS production. We screened Escherichia coli libraries of engineered transcription regulators with an expected broad range of metabolic diversity and trained several machine learning models to predict COS production titers. Subsequent feature analysis led to the finding of iron, whose addition we could show improved COS production in vivo up to 2-fold. Additionally, the analysis revealed important clues for future engineering steps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2025.01.005DOI Listing

Publication Analysis

Top Keywords

machine learning
16
cos production
16
learning models
12
production
8
escherichia coli
8
production pathway
8
engineering steps
8
feature analysis
8
machine
4
learning reveals
4

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!