Self-driven and self-catalytic tripedal DNA nanomachine for rapid and sensitive detection of miR-21 in in colorectal cancer.

Spectrochim Acta A Mol Biomol Spectrosc

Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

Published: January 2025

A self-driven and self-catalytic (SDSC) tripedal DNA nanomachine was developed for microRNA-21 (miR-21) detection. The microRNA could open one arm of tripedal DNA nanomachine to form DNAzyme with a nearby arm through the proximity effect. After DNAzyme's cleavage, the exposed DNA arm region competed with the third arm and produced a DNA segment (sequence Q). The released sequence Q initiated the next SDSC cycle of tripedal DNA nanomachine. In the special DNA nanomachines design, the components with close spatial localization were constructed on a single nanostructure, which significantly increased local reactant concentrations and reaction rates. A dynamic correlation was obtained from 10 pM to 50 nM between fluorescence signal and miR-21 concentration. The effective concentration of reactant greatly increased, compared with the free diffusible reactants. Consequently, the incubation time was significantly shorted to 35 min. This strategy showed a promising potential in miRNA detection and disease diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.125757DOI Listing

Publication Analysis

Top Keywords

tripedal dna
16
dna nanomachine
16
self-driven self-catalytic
8
dna
7
tripedal
4
self-catalytic tripedal
4
nanomachine
4
nanomachine rapid
4
rapid sensitive
4
sensitive detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!