PTPA localized in the Golgi apparatus plays an important role in osteoblast differentiation.

Biochem Biophys Res Commun

Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan. Electronic address:

Published: January 2025

Regulatory subunits of protein phosphatase 2A (PP2A) define the substrate and functional specificity of the PP2A holoenzyme within specific organelles. While PP2A regulates osteoblast differentiation, the roles and localization of its regulatory subunits in osteoblasts remain unclear. Here, we identified PTPA, a PP2A regulatory protein, predominantly localized to the Golgi apparatus, closely overlapping with the Golgi marker Giantin. Disruption of the Golgi structure by Brefeldin A caused PTPA to disperse into the cytoplasm. PTPA overexpression inhibited osteoblast differentiation by downregulating key transcriptional regulators. The Golgi-specific localization of PTPA suggests it may influence bone-related protein secretion and maintain Golgi integrity. These findings highlight the critical role of PTPA in osteoblast differentiation and its association with the Golgi apparatus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2025.151329DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
16
golgi apparatus
12
localized golgi
8
regulatory subunits
8
ptpa
6
golgi
6
ptpa localized
4
apparatus plays
4
plays role
4
osteoblast
4

Similar Publications

PTPA localized in the Golgi apparatus plays an important role in osteoblast differentiation.

Biochem Biophys Res Commun

January 2025

Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan. Electronic address:

Regulatory subunits of protein phosphatase 2A (PP2A) define the substrate and functional specificity of the PP2A holoenzyme within specific organelles. While PP2A regulates osteoblast differentiation, the roles and localization of its regulatory subunits in osteoblasts remain unclear. Here, we identified PTPA, a PP2A regulatory protein, predominantly localized to the Golgi apparatus, closely overlapping with the Golgi marker Giantin.

View Article and Find Full Text PDF

Transcriptional regulation of Rankl by Txnip-Ecd in aging and diabetic related osteoporosis.

J Adv Res

January 2025

Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. Electronic address:

Introduction: Bone homeostasis between osteoclast bone resorption and osteoblastic bone formation is tightly regulated by a series of factors such as the receptor activator of nuclear factor-κB ligand (RANKL). Denosumab that neutralizes RANKL is effective and widely applied in the treatment of postmenopausal osteoporosis. However, factors that participated in the RANKL-related bone remodeling process in primary and secondary osteoporosis are less known.

View Article and Find Full Text PDF

Manipulating Mg/Ca ratios in MgO-CaO-SiO bioactive glass for achieving accelerated osteogenic differentiation of human adipose-derived stem cells.

Biomater Adv

January 2025

International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan. Electronic address:

Cell-containing biomaterial is a promising material for treating nonunion or critical bone defect. Human adipose-derived stem cells (hADSCs) are suitable for bone repair due to their abundance in the abdomen, thighs, and buttocks. However, the low osteogenic capacities of hADSCs hinder their extended development for bone regeneration application.

View Article and Find Full Text PDF

Melt electrowriting of hydrophilic/hydrophobic multiblock copolymers for bone tissue regeneration.

Biomater Adv

January 2025

Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, 6229 ER Maastricht, the Netherlands. Electronic address:

Bone-healing complications can occur due to large bone defects or an insufficient bone regeneration capacity. Melt electrowriting (MEW) is a potential candidate for manufacturing synthetic scaffolds that may resolve bone-healing complications. MEW can exploit various biocompatible polymers with a wide range of tissue engineering applications.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!