Background: Diabetic chronic foot ulcers pose a significant therapeutic challenge around the world, resulting in adverse effects and complications in patients. D-mannose is enriched in cirtus peel and exerts beneficial effects among various diseases, especially against inflammation-related disorders.
Methods: Here, we examined the potential effect of D-mannose during wound healing process in streptozotocin (STZ)-induced diabetes mice in vivo and by culturing keratinocytes under high glucose condition in vitro. The skin lesion healing was recorded in photos and evaluated by histochemical staining. What's more, the advanced glycation end products (AGEs) concentration in blood and mice skin was quantified. Apoptotic cells were assessed by flow cytometry and Western blotting. Inflammatory cytokines and cellular differential gene expression levels were measured by real-time PCR. The expression of the AMPK/Nrf2/HO-1 signaling-related molecules was determined by Western blotting.
Results: We first found that topical supplementation of D-mannose remarkably improved skin wound healing in diabetes mice. Furthermore, both in vivo and in vitro experiments demonstrated that D-mannose reduced the AGEs generation. Mechanistically, D-mannose inhibited AGEs, then upregulated AMPK/Nrf2/HO-1 signaling in the context of high glucose to maintain keratinocyte normal functions, which positively influenced macrophage and fibroblast to accelerate diabetic wound healing. Noteworthily, these protective effects of D-mannose were abolished by the pretreatment with inhibitors of AGEs or AMPK.
Conclusion: As far as we know, this is the first study exploring the protective role of D-mannose on diabetic wound healing via topical supplementation. We find that D-mannose protects keratinocytes from high glucose stimulation via inhibition of AGEs formation as well as orchestrates inflammatory microenvironment in diabetic wounded skin, suggesting its supplementation as a potential therapy to promote refractory wound healing in diabetic patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s10020-025-01070-3 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China.
Introduction: Prevention and control of wound infection in burn patients is critical. This study aimed to establish an infection risk warning model based on the clinical characteristics of burn patients, by formulating targeted care programs according to the risk warning factors, and analyzing the effects of these programs on wound infection in burn patients.
Methodology: Data of 73 burn patients admitted to the hospital between 2020 and 2022 who underwent microbial culture examinations were analyzed.
Adv Healthc Mater
January 2025
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.
View Article and Find Full Text PDFEur Heart J
January 2025
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China.
Background And Aims: Lackluster results from recently completed gene therapy clinical trials of VEGF-A delivered by viral vectors have heightened the need to develop alternative delivery strategies. This study aims to demonstrate the pre-clinical efficacy and safety of extracellular vesicles (EVs) loaded with VEGF-A mRNA for the treatment of ischaemic vascular disease.
Methods: After encapsulation of full-length VEGF-A mRNA into fibroblast-derived EVs via cellular nanoporation (CNP), collected VEGF-A EVs were delivered into mouse models of ischaemic injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!