Microstructural parameters are essential in tumor research, aiding in the understanding tumor pathogenesis, grading, and therapeutic efficacy. The imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) model is the most widely used MR cell size imaging technique, demonstrating success in measuring microstructural parameters of solid tumors in vivo. However, its clinical application is limited by the longer scan times required for both pulsed gradient spin-echo (PGSE) and multiple oscillating gradient spin-echo (OGSE) acquisitions across a range of b-values, which can be burdensome for patients and disrupt clinical workflows. In this work, we propose and evaluate an accelerating method that integrates parallel acquisition technique (PAT) and simultaneous multi-slice (SMS) with local principal component analysis (LPCA) denoising to reduce scan times while maintaining image quality in MR cell size imaging. PGSE and OGSE (25 Hz, 50 Hz) images were acquired using P2S2 (PAT2-SMS2), P2S3 (PAT2-SMS3), and P3S3 (PAT3-SMS3) configurations, incorporating LPCA denoising, and compared to standard P2 (PAT2-SMS1) in healthy volunteers and brain tumor patients at 3 T. Additionally, clinical feasibility was further assessed through qualitative and quantitative evaluations. Qualitative assessment, conducted by two radiologists using a 5-point Likert scale, and quantitative analysis, including noise estimation, apparent diffusion coefficient (ADC) calculation, and estimation of microstructural parameters-cell diameter (Dmean), intracellular volume fraction (Vin), and extracellular diffusivity (Dex), were performed. Overall, the integration of PAT and SMS techniques reduces acquisition time by approximately 60 % compared to standard P2 acceleration, while maintaining comparable image quality and structural fidelity with LPCA denoising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2025.110327DOI Listing

Publication Analysis

Top Keywords

cell size
12
size imaging
12
microstructural parameters
12
lpca denoising
12
parallel acquisition
8
acquisition technique
8
technique pat
8
pat simultaneous
8
simultaneous multi-slice
8
multi-slice sms
8

Similar Publications

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

One of the key parameters that affects efficiency, power density and performance of a supercapacitor (SC) is the equivalent series resistance (ESR). In this study we propose a method to estimate ESR from the charging kinetics which has practical applications. Therefore, to study the ESR of the SC we must look at the different factors that affect this resistance.

View Article and Find Full Text PDF

This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.

View Article and Find Full Text PDF

Evaluating Cell Death Signaling by Immunofluorescence in a Rat Model of Ischemic Stroke.

J Vis Exp

January 2025

Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University;

Stroke is a leading cause of death and disability worldwide. Most cases of stroke are ischemic and result from the occlusion of the middle cerebral artery (MCA). Current pharmacological approaches for the treatment of ischemic stroke are limited; therefore, novel therapies providing effective neuroprotection against ischemic injury following stroke are urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!