Camellia oil (CO) is known for its nutritional value and health benefits, but its high price makes it susceptible to adulteration. This study developed a binary adulteration system for CO in response to the adulteration of rapeseed oil (RO) into CO that been observed in the market. A total of 243 oil samples adulterated with various concentrations of RO were prepared. The spectral information of the adulterated oil samples was obtained using near-infrared (NIR) spectroscopy. Additionally, visual data obtained from smartphone-captured images and videos were analysed. Deep-learning models trained on video data reached the highest accuracy of 96.30 %. To improve detection accuracy, a multimodal approach was adopted by combing spectral and visual data. Generally, this study presented a novel method for detecting the authenticity of CO in real time, providing technical support to address increasingly serious food safety concerns and laying the foundation for future rapid online detection using smartphones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.142930DOI Listing

Publication Analysis

Top Keywords

camellia oil
8
oil samples
8
visual data
8
oil
5
detection camellia
4
adulteration
4
oil adulteration
4
adulteration based
4
based near-infrared
4
near-infrared spectroscopy
4

Similar Publications

Konjac glucomannan (KGM) undergoes deacetylation in alkaline conditions, while κ-carrageenan (CRG) is sensitive to potassium ions. This study examines the influence of KCO on the mechanical properties of KGM/CRG-based camellia oil Pickering emulsion gels. Texture analysis and rheological testing revealed that the addition of KCO significantly enhanced the mechanical properties of emulsion gels.

View Article and Find Full Text PDF

Camellia oil (CO) is known for its nutritional value and health benefits, but its high price makes it susceptible to adulteration. This study developed a binary adulteration system for CO in response to the adulteration of rapeseed oil (RO) into CO that been observed in the market. A total of 243 oil samples adulterated with various concentrations of RO were prepared.

View Article and Find Full Text PDF

Phytosterol-enriched Camellia oleifera Abel seed oil obtained by subcritical butane extraction: Physicochemical properties and oxidative stability.

Food Chem

January 2025

School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, China. Electronic address:

Tea (Camellia oleifera Abel) seed oil (TSO) has antioxidant and pharmacological properties. In this study, TSO was obtained from tea seeds by subcritical n-butane extraction (SBE), which is an environmentally friendly method. The oil yield, quality characteristics, and chemical composition of the extracted TSO were compared with those of oils obtained by supercritical carbon dioxide extraction (SCDE) and conventional cold pressing (CP).

View Article and Find Full Text PDF

Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of () in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of increased from 11.

View Article and Find Full Text PDF

The effects of three dietary oils (rapeseed oil, camellia oil, linseed oil) with different fatty acid compositions on the growth performance, digestion and gut microbiota of rats after 8 weeks of feeding were studied. The serum metabolic index and liver histomorphology of rats were measured using an automatic biochemical analyzer and light microscope. Furthermore, 16S rDNA amplicon sequencing technology was used to analyze the gut microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!