A study on the qualitative analysis of lotus seedpod oligomeric procyanidins during digestion, absorption and colonic fermentation based on UPLC-Q-Exactive/MS.

Food Chem

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China. Electronic address:

Published: January 2025

Polyphenols have potent antioxidant properties, but are easily degraded in the gastrointestinal tract, greatly limiting their application as dietary supplements. Therefore, the composition changes of lotus seedpod oligomeric procyanidins (LSOPC) in the gastrointestinal digestion, colonic fermentation and their absorption in Caco-2 cell monolayer were studied. The extracted LSOPC were identified using UPLC-Q-Exactive/MS, and a total of 47 compounds were identified. After gastrointestinal digestion, succinic acid, protocatechuic acid, p-Hydroxybenzoic acid, azelaic acid, and dihydroxyphenylacetic acid were released. Compared to gastrointestinal digestion, the total phenolic content and antioxidant capacity of LSOPC were significantly higher after colonic fermentation (P < 0.05). In addition, catechin (2.5%) crossed the Caco-2 cell monolayer and entered systemic circulation. Most of the LSOPC were not absorbed but instead entered the colon, where they were degraded to phenolic acids by gut microbiota. At the same time, unabsorbed LSOPC and their metabolites modulated the composition of gut microbiota, decreasing the Firmicutes/Bacteroidetes ratio and promoting the generation of short-chain fatty acids, especially acetic acid. Phenylacetic acid, p-Hydroxyphenylpropionic acid, p-coumaric acid, dihydroxyphenyl-ɤ-valerolactone, and 4-(3,4'-dihydroxyphenyl) valeric acid could not be detected until after colonic fermentation. It is the first time to systematically clarify compositional transformations of LSOPC during gastrointestinal digestion and colonic fermentation, which will pave the way for increasing the economic value of lotus seedpod and provide a theoretical basis for polyphenols as dietary supplements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.142864DOI Listing

Publication Analysis

Top Keywords

colonic fermentation
12
gastrointestinal digestion
12
lotus seedpod
8
seedpod oligomeric
8
oligomeric procyanidins
8
acid
5
study qualitative
4
qualitative analysis
4
analysis lotus
4
digestion
4

Similar Publications

Establishment of a Low-Cost and Efficient In Vitro Model for Cultivating Intestinal Microbiota.

J Agric Food Chem

January 2025

Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.

The Simulator of Human Intestinal Microbial Ecosystem (SHIME) has hindered widespread adoption due to its high cost. This study founded biomimetic multilink fermentation equipment (BMLFE), priced at half or even lower than SHIME. It was improved based on multilink fermentation equipment (MLFE) by modifying materials, peristaltic pumps, fermentation time, and dietary habits while calculating transfer time and volumes and conducted anaerobic fermentation for 15 days followed by monitoring changes in intestinal microbial composition and short-chain fatty acids (SCFAs).

View Article and Find Full Text PDF

In this study, type-3 resistant starch (RS) with enhanced thermal stability and excellent short-chain fatty acid (SCFA) production was obtained through the butyrylation and subsequent recrystallization at 4 °C of high-amylose maize starch (HAMS). We comprehensively examined and contrasted the structural attributes and in vitro human fecal fermentation behavior of butyrylated RS (BRS) with varying degrees of substitution. Fourier-transform infrared analysis validated the successful integration of carbonyl groups into the starch matrix.

View Article and Find Full Text PDF

A study on the qualitative analysis of lotus seedpod oligomeric procyanidins during digestion, absorption and colonic fermentation based on UPLC-Q-Exactive/MS.

Food Chem

January 2025

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China. Electronic address:

Polyphenols have potent antioxidant properties, but are easily degraded in the gastrointestinal tract, greatly limiting their application as dietary supplements. Therefore, the composition changes of lotus seedpod oligomeric procyanidins (LSOPC) in the gastrointestinal digestion, colonic fermentation and their absorption in Caco-2 cell monolayer were studied. The extracted LSOPC were identified using UPLC-Q-Exactive/MS, and a total of 47 compounds were identified.

View Article and Find Full Text PDF

The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.

View Article and Find Full Text PDF

Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!