Rh single atoms anchored in hollow microflower MoS/sulfur-vacancy rich CdZnS with dual proton reduction sites for enhanced photocatalytic hydrogen generation.

J Colloid Interface Sci

State Key Laboratory Base for Eco-chemical Engineering, Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

Published: January 2025

Modifying CdZnS with precious metal at the atomic scale is a promising approach for maximizing its photocatalytic performance. Herein, Rh single atoms (Rh) were successfully anchored on hollow microflower MoS/sulfur-vacancy-rich CdZnS (CZS-SVs) to boost H generation. The optimal catalyst Rh@MoS/CZS-SVs reaches a H productivity of 39,827 μmol h g, representing 5.64 and 4.36-folds enhancement compared with pristine CZS and CZS-SVs, respectively. The enhanced H generation activity was due to Rh single atoms and sulfur-vacancy defects, both of which can effectively promote carrier separation and prolong carrier lifespan. Notably, density functional theory (DFT) calculations suggest that introducing Rh single-atom sites on MoS/CZS-SVs significantly facilitated electron transfer, leading to efficient conversion of the H* intermediate to H (|ΔGH*| = 0.44 eV). Consistently, in situ Raman analysis confirmed Rh and S dual proton-reduction sites. Due to the accumulation of abundant electric charges, S atoms sites can also participate in H evolution process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.104DOI Listing

Publication Analysis

Top Keywords

single atoms
12
atoms anchored
8
anchored hollow
8
hollow microflower
8
microflower mos/sulfur-vacancy
4
mos/sulfur-vacancy rich
4
rich cdzns
4
cdzns dual
4
dual proton
4
proton reduction
4

Similar Publications

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

Engineering the local electronic structure of single atom catalysts (SACs) still remains challenging. In this study, a Ru-NiS single atom catalyst with a controlled S coordination environment, where Ru single atoms are implanted on a NiS nanoflower consisting of plenty of cross-linked nanosheets, has been developed a facile atom capture strategy. Using Density Functional Theory (DFT) calculations, it has been revealed that the fine-tuned local S coordination environment can optimize the electronic structure of Ru active sites, and reduce the energy barrier of the rate-determining step for the oxygen evolution reaction (OER), thus boosting the electrocatalytic activity, such as a low overpotential of 269 mV at 10 mA cm.

View Article and Find Full Text PDF

High-voltage lithium-metal batteries (HVLMBs) are appealing candidates for next-generation high-energy rechargeable batteries, but their practical applications are still limited by the severe capacity degradation, attributed to the poor interfacial stability and compatibility between the electrode and the electrolyte. In this work, a 2D conjugated phthalocyanine framework (CPF) containing single atoms (SAs) of cobalt (CoSAs-CPF) is developed as a novel artificial solid-electrolyte interphase (SEI) in which a large amount of charge is transferred to the CPF skeleton due to the Lewis acid activity of the Co metal sites and the strong electron-absorbing property of the cyano group (-CN), greatly enhancing the adsorption of the Li and regulating the Li distribution toward dendrite-free LMBs, which are superior to most of the reported SEI membranes. As a result, the Li||Li symmetrical cell with CoSAs-CPF-modified Li anodes (CoSAs-CPF@Li) exhibits a low polarization with an area capacity of 1.

View Article and Find Full Text PDF

Mechanosensitivity is the ability of cells to sense and respond to mechanical stimuli. In order to do this, cells are endowed with different components that allow them to react to a broad range of stimuli, such as compression or shear forces, pressure, and vibrations. This sensing process, mechanosensing, is involved in fundamental physiological mechanisms, such as stem cell differentiation and migration, but it is also central to the development of pathogenic states.

View Article and Find Full Text PDF

Probing living cell dynamics and molecular interactions using atomic force microscopy.

Biophys Rev

December 2024

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, 1348 Louvain-la-Neuve, Belgium.

Atomic force microscopy (AFM) has emerged as a powerful tool for studying biological interactions at the single-molecule level, offering unparalleled insights into receptor-ligand dynamics on living cells. This review discusses key developments in the application of AFM, highlighting its ability to capture nanomechanical properties of cellular surfaces and probe dynamic interactions, such as virus-host binding. AFM's versatility in measuring mechanical forces and mapping molecular interactions in near-physiological conditions is explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!