Studies have demonstrated that several lncRNAs exhibit abnormal expression levels in patients suffering from osteoarthritis, and in-depth investigation of these aberrantly expressed lncRNAs may pave the way for innovative therapeutic strategies targeting OA. The aim of this study was to examine the expression of glucuronidase beta pseudogene 11 (GUSBP11) in OA patients and to elucidate its potential molecular mechanism. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to detect GUSBP11 levels on cartilage tissues and serum samples obtained from OA patients. To establish an in vitro OA cell model, interleukin-1β (IL-1β) was utilized to induce CHON-001 and ATDC5 cell lines. Cell counting kit-8 (CCK-8) assay and flow cytometry were performed to evaluate cell viability and apoptosis, and enzyme-linked immunosorbent assay (ELISA) was employed to qualify the levels of inflammatory factors. StarBase database predicted that miR-122-5p was the target gene of GUSBP11. Subsequently, luciferase reporter genes were conducted to validate this interaction. Potential target genes of miR-122-5p were predicted, followed by gene function annotation and correlation analysis of these targets. Our findings revealed that GUSBP11 expression was markedly decreased in both the cartilage tissues and serum of OA patients. Diminished levels of GUSBP11 showed high diagnostic accuracy for OA. In the IL-1β-induced OA cell model, GUSBP11 expression was notably reduced, leading to decreased cell viability, an increase in apoptotic cells, and elevated levels of inflammatory factors. Up-regulation of GUSBP11 significantly ameliorated these adverse effects. Luciferase reporter genes confirmed the interaction between GUSBP11 and miR-122-5p, indicating that an increase in miR-122-5p drastically inhibited cell viability while promoting apoptosis and inflammation. In conclusion, within the context of the in vitro OA cell model, GUSBP11 appears to exacerbate IL-1β-induced chondrocyte inflammation through the up-regulation of miR-122-5p. This underscores the potential of GUSBP11 as a novel target and avenue for therapeutic intervention in the treatment of OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2025.156858 | DOI Listing |
Eur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China.
Introduction: Prevention and control of wound infection in burn patients is critical. This study aimed to establish an infection risk warning model based on the clinical characteristics of burn patients, by formulating targeted care programs according to the risk warning factors, and analyzing the effects of these programs on wound infection in burn patients.
Methodology: Data of 73 burn patients admitted to the hospital between 2020 and 2022 who underwent microbial culture examinations were analyzed.
Protein Cell
January 2025
Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Neoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of General Surgery/Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!