Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity. We also compared the mechanisms of color deficiency induced by BPA and BPS at the same concentrations. The results indicated that BPA (10 and 100 μg/L) caused the abnormal proliferation (increased number of cone cells), morphological abnormalities (increased height of cone cells), mosaic pattern disorder, and depressed expression of key genes related to the photo-transduction pathway, and impaired the light perception ability of both red and UV cones ultimately. Similar to the BPA exposure group, BPS (1, 10, and 100 μg/L) exposure resulted in structural damage and mosaic arrays disorder of red and UV cone photoreceptors. In contrast to BPA exposure, BPS exposure resulted in significant activation of key genes involved in the phototransduction pathway. Our data indicate that both BPS and BPA exposure can interfere with the development of cone cells, and two types of compounds disturb the transduction of photon signals within cone cells in different ways, which further impaired the retinal spectral sensitivity to the light signal. This study clarifies the root cause for color vision impairment induced by BPA from the perspective of cone-mediated color vision. It also clarified that the BPA and its substitute BPS may not be entirely safe at the single-cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2025.117737DOI Listing

Publication Analysis

Top Keywords

cone cells
16
cone photoreceptors
12
color vision
12
bpa exposure
12
bpa
9
spectral sensitivity
8
cone
8
bpa substitute
8
visual toxicity
8
induced bpa
8

Similar Publications

Purpose: There is evidence of the role of dark adaptation (DA) as a functional biomarker in age-related macular degeneration (AMD) where foveal cones are impacted during the initial stages of AMD. In this study we determine the repeatability of smartphone application (MOBILE DA) to evaluate the cone-mediated dark adaptation (DA) in healthy young adults.

Methods: Testing was done by placing a smartphone in front of the subject in a dark room.

View Article and Find Full Text PDF

Passage of the HIV capsid cracks the nuclear pore.

Cell

January 2025

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Upon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however.

View Article and Find Full Text PDF

Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity.

View Article and Find Full Text PDF

Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans.

PLoS Genet

January 2025

Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.

Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.

View Article and Find Full Text PDF

Rod and cone photoreceptor cells are specialized neurons responsible for transforming the information reaching the eyes in the form of photons into the language of neuronal activity. Rods are the most prevalent photoreceptor type, primarily responsible for light detection under conditions of limited illumination. Here we demonstrate that human rods have a morphological organization unique among all described species, whereby the cell soma extends alongside the light-sensitive outer segment compartment to form a structure we have termed the "accessory inner segment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!