Diatomic "catalytic/co-catalytic" Fe/Mo catalysts promote Fenton-like reaction to treat organic wastewater through special interfacial reaction enhancement mechanism.

Water Res

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, China. Electronic address:

Published: January 2025

The full utilization of active sites and the effective Fe/Fecycling are the key problems that expand the application of iron-based Fenton-like reaction in water purification. In this paper, a novel diatomic Fe/Mo catalyst (Fe/Mo-DACs) was used to enhance the interfacial reaction mechanism with oxidant to achieve more stronger selective degradation of electron-donating organic pollutants. The availability of Fe sites during the activation of peroxymonosulfate (PMS) was enhanced by the adjacent atomic Mo sites, and the resulting special interfacial complex (Fe/Mo-DACs-PMS*) possessed higher activity, stability and selectivity (especially for electron-donating organics). The degradation rate of bisphenol A (BPA) in Fe/Mo-DACs/PMS system (0.642 min) was increased by two times compared with the corresponding Fe single-atomic reaction system. Density functional theory calculation analysis further indicated that the diatomic Fe/Mo site was the true activation center of PMS, and other independent single-atom Fe sites cooperated to optimize the interface reaction mechanism (adsorption and activation) of PMS on the materials' surface. Moreover, the promotion of Fe/Fe cycling by Mo sites further enhanced the sustainability and adaptability of this degradation system. The atomic-level "catalytic/co-catalytic" materials are expected to broaden the design idea of heterogeneous materials and enhance the application prospect of Fenton-like reactions in water pollution control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2025.123147DOI Listing

Publication Analysis

Top Keywords

fenton-like reaction
8
special interfacial
8
interfacial reaction
8
diatomic fe/mo
8
reaction mechanism
8
reaction
6
sites
5
diatomic "catalytic/co-catalytic"
4
"catalytic/co-catalytic" fe/mo
4
fe/mo catalysts
4

Similar Publications

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method.

View Article and Find Full Text PDF

Fenton-like reactions between organic peroxides and transition-metal ions in the atmospheric aqueous phase have profound impacts on the chemistry, composition, and health effects of aerosols. However, the kinetics, mechanisms, and key influencing factors of such reactions remain poorly understood. In this study, we synthesized a series of monoterpene-derived α-acyloxyalkyl hydroperoxides (AAHPs), an important class of organic peroxides formed from Criegee intermediates during the ozonolysis of alkenes, and investigated their Fenton-like reactions with iron ions in the aqueous phase.

View Article and Find Full Text PDF

The role of Histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: mechanistic studies.

J Pharm Sci

January 2025

Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA. Electronic address:

Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood.

View Article and Find Full Text PDF

Diatomic "catalytic/co-catalytic" Fe/Mo catalysts promote Fenton-like reaction to treat organic wastewater through special interfacial reaction enhancement mechanism.

Water Res

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, China. Electronic address:

The full utilization of active sites and the effective Fe/Fecycling are the key problems that expand the application of iron-based Fenton-like reaction in water purification. In this paper, a novel diatomic Fe/Mo catalyst (Fe/Mo-DACs) was used to enhance the interfacial reaction mechanism with oxidant to achieve more stronger selective degradation of electron-donating organic pollutants. The availability of Fe sites during the activation of peroxymonosulfate (PMS) was enhanced by the adjacent atomic Mo sites, and the resulting special interfacial complex (Fe/Mo-DACs-PMS*) possessed higher activity, stability and selectivity (especially for electron-donating organics).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!