Stride-to-stride fluctuations are natural in gait. These fluctuations are marked by inter-individual variability, suggesting that different fluctuation strategies (i.e., phenotypes) may exist. This study investigates the presence of gait fluctuation phenotypes. Whole-body kinematics were measured from young, healthy males and females (N = 51) while walking on a treadmill at their preferred speed. Motor fluctuation metrics (i.e., magnitude of variability, local dynamic stability, and regularity) were measured for 32 joint angles across the upper and lower body. These metrics were reduced to principal components (PCs) via principal component analysis and then grouped into clusters using the k-means method. One-way ANOVAs were conducted to test for cluster differences in motor fluctuation PCs. Three PCs were extracted, explaining 39.7 % of all 96 motor fluctuation metrics. Higher PC1 scores represent more fluctuation across all joints, higher PC2 scores represent greater upper limb fluctuations with fewer fluctuations in the lower limb, and PC3 scores represent less regularity in fluctuations. PC scores best grouped into four clusters in 54.0 % of iterations. Clusters 1-4 each had a significantly different PC1 score (p < 0.022), and Cluster 3 had a higher PC2 score than all other clusters (p < 0.022). Motor fluctuations in treadmill gait of young adults were characterised by four gait fluctuation phenotypes, interpreted as repeaters, replacers, moderate fluctuators, and mixed fluctuators (i.e. more upper limb but fewer lower limb fluctuations); extending the repeaters vs replacers hypothesis. The identified phenotypes add a new perspective that may help clarify the link between motor fluctuations and gait instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2025.112523 | DOI Listing |
Homeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals.
View Article and Find Full Text PDFJ Biomech
January 2025
School of Human Kinetics, University of Ottawa, Ottawa, Canada. Electronic address:
Stride-to-stride fluctuations are natural in gait. These fluctuations are marked by inter-individual variability, suggesting that different fluctuation strategies (i.e.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Integrative Physiology, University of Colorado Boulder.
Our purpose was to compare the influence of the spectral content of motor unit recordings on the calculation of electromechanical delay and on the prediction of force fluctuations from measures of the variability in discharge times and neural drive during steady isometric contractions with the first dorsal interosseus muscle. Participants ( = 42; 60 ± 13 yrs) performed contractions at 5% and 20% MVC. After satisfying inclusion criteria, high-density surface EMG recordings from a subset of 23 participants were decomposed into the discharge times of 530 motor units.
View Article and Find Full Text PDFJ Neural Eng
January 2025
University of Pittsburgh, 1622 Locust St, Pittsburgh, Pennsylvania, 15219, UNITED STATES.
Real-world implementation of brain-computer interfaces (BCI) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control, but presents a challenge: how do we know when it is appropriate to decode anything at all? Activity in motor cortex is dynamic and modulates with many different types of actions (proximal arm control, hand control, speech, etc.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, United Kingdom.
Fluctuation-related pain (FRP) affects more than one third of people with Parkinson's disease (PwP, PD) and has a harmful effect on health-related quality of life (HRQoL), but often remains under-reported by patients and neglected by clinicians. The National Institute for Health and Care Excellence (NICE) recommends The Parkinson KinetiGraphTM (the PKGTM) for remote monitoring of motor symptoms. We investigated potential links between the PKGTM-obtained parameters and clinical rating scores for FRP in PwP in an exploratory, cross-sectional analysis of two prospective studies: "The Non-motor International Longitudinal, Real-Life Study in PD-NILS" and "An observational-based registry of baseline PKG™ in PD-PKGReg".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!