Bone-healing complications can occur due to large bone defects or an insufficient bone regeneration capacity. Melt electrowriting (MEW) is a potential candidate for manufacturing synthetic scaffolds that may resolve bone-healing complications. MEW can exploit various biocompatible polymers with a wide range of tissue engineering applications. Poly (ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a multiblock copolymer family, has emerged as a promising biomaterial to guide cell behavior, particularly in promoting bone differentiation. The polymer is known for its tunability by varying the PEOT/PBT weight ratios to influence the chemical, physical and mechanical properties. Four carefully selected PEOT/PBT compositions investigated in this study with the poly (ethylene oxide terephthalate) content ranging from 36 and 65 wt%. Detailed rheological characterization was performed to determine the optimum printing temperature, followed by optimizing the MEW parameters to fabricate a well-defined and layer-by-layer scaffold for each copolymer composition. The effect of distinct physicochemical properties on cell behavior was also investigated using MG63 cells on both 2D films and MEW scaffolds. MEW scaffolds made from each polymer compositions show good cell attachment and proliferation along with flattened cell morphology in contrast with highly varied performance on 2D films. In addition, the in vitro bioactivity test using simulation body fluid reveals the formation of bone-like apatite layer formation on the MEW scaffolds made from high molecular weight and poly (ethylene oxide terephthalate) composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2024.214167 | DOI Listing |
Macromolecules
January 2025
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The environmental and economic challenges posed by the widespread use and disposal of plastics, particularly poly(ethylene terephthalate) (PET), require innovative solutions to mitigate their impact. Such mitigation begins with understanding physical properties of the polymer that could enable new recycling technologies. Although molecular simulations have provided valuable insights into PET interactions with various PET hydrolases, current nonpolarizable force fields neglect the electronic polarization effects inherent to PET interactions.
View Article and Find Full Text PDFBiofilm
December 2024
Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Biodegradable polymeric coatings are being explored as a preventive strategy for orthopaedic device-related infection. In this study, titanium surfaces (Ti) were coated with poly-D,L-lactide (PDLLA, (P)), polyethylene-glycol poly-D,L-lactide PEGylated-PDLLA, (PP20)), or multi-layered PEGylated-PDLLA (M), with or without 1 % silver sulfadiazine. The aim was to evaluate their cytocompatibility, resistance to biofilm formation, and their potential to enhance the susceptibility of any biofilm formed to antibiotics.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.
This study investigates the reinforcement of cement paste with woven fabrics made from recycled poly(ethylene terephthalate) (PET) bottle yarn, aiming to enhance its mechanical properties while addressing PET waste. PET bottles were transformed into yarn with a denier of 3,593.8, strength of 91.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Süleyman Demirel University, Isparta 32260, Turkey.
Polylactic acid (PLA) composite fibers were obtained using melt electrospinning, in which a high voltage was applied to the nozzle of the 3D printer. Filaments for melt electrospinning were prepared by using an extruder operated at 155 °C. PLA was mixed with polycaprolactone (PCL; 95:5, 90:10, and 85:15 by wt %), zinc oxide (ZnO; 0.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA.
Anterior cervical spine surgeries are often complicated by difficulty swallowing due to local postoperative swelling, pain, scarring, and tissue dysfunction. These postoperative events lead to systemic steroid and narcotic use. Local, sustained drug delivery may address these problems, but current materials are unsafe for tight surgical spaces due to high biomaterial swelling, especially upon degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!