There remains uncertainty regarding the influence of microcystin-leucine arginine (MC-LR) on amphibian intestinal health, specifically how MC-LR interferes with intestinal microbiota following exposure to environmental concentrations. In this study, Lithobates catesbeianus tadpoles were exposed to varying MC-LR concentrations (0, 0.5, and 2 µg/L) over a 30-day period. The aim was to investigate how altered interactions between tadpole intestinal microbiota and the intestinal barrier influence intestinal health following MC-LR exposure. Following exposure to the MC-LR at low ambient concentrations, tadpole intestinal tissue was damaged. It had increased permeability, reduced pathogen inhibition capacity, and impaired digestive function. Additionally, there was a significant increase in lipopolysaccharide content and upregulation of downstream response genes, including TLR4, MyD88, and NF-κB, within the intestinal tissue. Therefore, eosinophils' count and pro-inflammatory cytokines' expression increased. In addition, MC-LR exposure induced oxidative stress and mitochondrial structural damage by increasing the levels of reactive oxygen species in intestinal tissue. CytoC and Bax transcription, as well as caspase 9 and caspase 3 activities, increased significantly. Significant downregulation of Bcl-2 transcription promoted apoptosis in tadpole intestinal cells. MC-LR exposure disrupted intestinal microbiota and metabolism in tadpoles. Correlation analysis revealed a strong association between intestinal microbiota and oxidative stress, inflammation, immunity, and tissue damage in the intestine. Conclusively, this study provides the first demonstration that MC-LR significantly affects amphibian intestinal microbiota, highlighting tadpoles' susceptibility to environmental risks posed by MC-LR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2025.107249 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Aerobic exercise (AE) has been shown to offer significant benefits for Alzheimer's disease (AD), potentially influencing the gut microbiota. However, the impact of changes in intestinal flora in early Alzheimer's disease induced by aerobic exercise on metabolic pathways and metabolites is not well understood. In this study, 3-month-old APP/PS1 and C57BL/6 mice were divided into two groups each: a control group (ADC for APP/PS1 and WTC for C57BL/6) and an aerobic exercise group (ADE for APP/PS1 and WTE for C57BL/6).
View Article and Find Full Text PDFEur J Neurosci
January 2025
Health Examination Center, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, Chuzhou, China.
Parkinson's disease (PD) is a neurodegenerative disease involving multiple factors. We explored the connection between intestinal microbiome levels and PD by examining inflammatory cytokines, peripheral immune cell counts and plasma metabolomics as potential factors. By obtaining the Genome-Wide Association Study (GWAS) data needed for this study from GWAS Catalog, including summary data for 473 intestinal microbiota traits (N = 5959), 91 inflammatory cytokine traits (N = 14,824), 118 peripheral immune cell count traits (N = 3757), 1400 plasma metabolite traits (N = 8299) and PD traits (N = 482,730).
View Article and Find Full Text PDFVet Q
December 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
Coccidiosis is a global disease caused by protozoans, typically including spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs.
View Article and Find Full Text PDFFood Funct
January 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China.
is a valuable edible fungus with multidimensional bioactivities; however, research on protein and its beneficial effects on nonalcoholic fatty liver disease (NAFLD) have been limited. In this study, protein (MEP) with 80.59% protein content was prepared, isolated, and characterized by the complete amino acid composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!