Drought tolerance as an evolutionary precursor to frost and winter tolerance in grasses.

Evolution

Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.

Published: January 2025

AI Article Synopsis

Article Abstract

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.e. the evolution of these responses relative to each other, is poorly known. Here, we test whether adaptation to frost and/or severe winters in grasses (Poaceae) was facilitated by ancestral adaptation to drought. We used occurrence patterns across Köppen-Geiger climate zones to classify species as drought, frost and/or winter tolerant, followed by comparative analyses. Ancestral state reconstructions revealed different evolutionary trajectories in different clades, suggesting both drought-first and frost-first scenarios. Explicit simultaneous modelling of drought and frost/winter tolerance provided some support for correlated evolution, but suggested higher rates of gain of frost/winter tolerance in drought sensitive rather than drought tolerant lineages. Overall, there is limited support across grasses as a whole that drought tolerance acted as an evolutionary precursor to frost or severe winter tolerance. Different scenarios in different clades is consistent with present-day grasses being either cold or drought specialists, possibly as a consequence of trade-offs between different stress tolerance responses.

Download full-text PDF

Source
http://dx.doi.org/10.1093/evolut/qpaf006DOI Listing

Publication Analysis

Top Keywords

drought
9
drought tolerance
8
evolutionary precursor
8
precursor frost
8
winter tolerance
8
drought frost
8
frost and/or
8
frost/winter tolerance
8
tolerance
6
frost
5

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

The Northeast region of Brazil is characterized by long periods of drought. However, the region is also frequently affected by floods. The socioeconomic characteristics of the locality make the population more vulnerable to the impacts of these disasters.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems.

BMC Plant Biol

January 2025

Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.

Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.

View Article and Find Full Text PDF

Agronomic characteristics, mineral nutrient content, antioxidant capacity, biochemical composition, and fatty acid profile of Iranian pistachio (Pistacia vera L.) cultivars.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, Hatay Olive Research Institute Directorate, General Directorate of Agricultural Research and Policies, Hassa Station, Hassa, Hatay, 31700, Türkiye.

Background: Pistachio (Pistacia vera L.) nuts are among the most popular nuts. The pistachio cultivars are tolerant to both drought and salinity, which is why they are extensively grown in the arid, saline, and hot regions of the Middle East, Mediterranean countries, and the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!