Beneficial death: A substantial element of evolution?

Biogerontology

Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.

Published: January 2025

AI Article Synopsis

Article Abstract

If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions. As a result, shorter-lived individuals achieve faster adaptation through more frequent generational turnover, displacing longer-lived ones and likely providing a competitive advantage between species. Contrary to previous assumptions, this work proposes a mechanism by which early death, e.g., due to aging, may contribute to evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10522-024-10176-wDOI Listing

Publication Analysis

Top Keywords

beneficial death
4
death substantial
4
substantial element
4
element evolution?
4
evolution? shortened
4
shortened lifespan
4
lifespan evolutionarily
4
evolutionarily advantageous
4
advantageous nature
4
nature will
4

Similar Publications

Beneficial death: A substantial element of evolution?

Biogerontology

January 2025

Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.

If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods.

View Article and Find Full Text PDF

Eliminating osmotic stress during cryoprotectant loading: A mathematical investigation of solute-solvent transport.

Cryobiology

January 2025

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States of America. Electronic address:

Osmotic stresses during cryoprotectant loading induce changes in cellular volume, leading to membrane damage or even cell death. Appropriate model-guided mitigation of these osmotic gradients during cryoprotectant loading is currently lacking, but would be highly beneficial in reducing viability loss during the loading process. To address this need, we reformulate the two-parameter formalism described by Jacobs and Stewart for cryoprotectant loading under the constraint of constant cell volume.

View Article and Find Full Text PDF

Neural Stem/Progenitor Cell Therapy in Patients and Animals with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-analysis.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!