Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21 + cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11357-025-01507-x | DOI Listing |
Lupus
January 2025
Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
Background: Systemic lupus erythematosus is a common autoimmune disease. Studies have suggested that defective stem cells could be involved in the pathogenesis of systemic lupus erythematosus, which leads to changes in the function of immune cells. By observing the cell morphology, autophagy, and senescence of bone marrow mesenchymal stem cells (BMSCs) from lupus mice and normal controls, this study investigated the role of IL-6 in autophagy and senescence of BMSCs and explored relevant mechanisms.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea. Electronic address:
Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!