AI Article Synopsis

Article Abstract

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci. Total of 63 consensus sequences were analyzed, revealing 10 haplotypes with high haplotype diversity (Hd = 0.906 ± 0.031) and moderate nucleotide diversity (π = 0.00539 ± 0.004) at mitochondrial markers. Microsatellite analysis indicated moderate genetic variability, with observed heterozygosity (Ho = 0.445 ± 0.049) and expected heterozygosity (He = 0.764 ± 0.039), comparable to the forest musk deer but relatively lower than that observed in other ungulates. Population structure analysis identified three potential genetic clusters, with evidence of genetic admixture in the Lahaul Valley, possibly due to gene flow from neighboring areas. Historical demographic analyses using Bayesian skyline plots and mismatch distribution curves indicated stable population sizes in the past, followed by recent declines in maternal effective population size.

Conclusions: Our findings highlight the necessity of preserving the genetic diversity of the Kashmir musk deer to ensure its long-term survival. We recommend expanding the geographic range of sampling to include regions such as Chamba and Kinnaur districts in Himachal Pradesh, potential areas in Jammu and Kashmir and Uttarakhand, for more comprehensive population-level analysis. Such efforts will be crucial for developing targeted conservation strategies and mitigating the impacts of human activities on this endangered species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-025-10237-4DOI Listing

Publication Analysis

Top Keywords

musk deer
20
kashmir musk
16
genetic diversity
12
population structure
12
endangered kashmir
8
deer north-western
8
genetic
6
population
6
musk
6
diversity
5

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

The forest musk deer () and Siberian roe deer () are browsers with a broad sympatric distribution in North and Southwest China. However, little is known about their spatial utilization of microhabitats and habitats. This study, conducted on Huanglong Mountain in China, analyzed the defecation site distribution, indicating preferences of forest musk deer and Siberian roe deer for their habitat demands.

View Article and Find Full Text PDF

Understanding the dietary composition of the Siberian musk deer () is critical for informing conservation efforts, particularly given the species' vulnerable status in the Republic of Korea and its limited ecological data. Previous dietary studies have relied on conventional methods with limitations in taxonomic precision, hindering comprehensive insights into their feeding ecology. To address this gap, we used Next-Generation Sequencing to analyze 16 fecal samples collected in April from Gangwon Province, the habitat of .

View Article and Find Full Text PDF

Effects of Livestock Grazing on Spatiotemporal Interactions Between Snow Leopards and Ungulate Prey.

Integr Zool

December 2024

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Spatiotemporal interactions between predators and prey are central to maintaining sustainable functioning ecosystems and community stability. For wild ungulates and their predators, livestock grazing is an important anthropogenic disturbance causing population declines and modifying their interactions over time and space. However, it is poorly understood how fine-scale grazing affects the spatiotemporal responses of predators, prey, and their interactions.

View Article and Find Full Text PDF

Introduction: Guided endodontics represents an effective method for achieving safe and reliable endodontic surgery in human medicine. However, it is rarely employed in small animal dentistry. This study employed finite element analysis and three-dimensional (3D) printing techniques to explore the feasibility of guided endodontics in Beagle mandibular teeth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!