This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber. However, it can degrade heat-sensitive nutrients, such as certain amino acids. The role of extrusion in food innovation is highlighted, especially in the creation of healthy and functional products such as snacks, gluten-free pastas, and meat analogs. Some innovations in the extrusion process and future trends, such as the use of artificial intelligence to optimize formulations and customize products, have been presented. The importance of Andean grains in the fight against food insecurity has been emphasized. These grains can be transformed into accessible, long-lasting, and nutritious foods, diversifying the diet and taking advantage of local resources. This review aims to serve as a valuable guide for researchers, food developers, and policymakers in their pursuit of creating more accessible, nutritious, and sustainable food options to meet escalating global demands for food security and enhanced nutrition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11130-025-01294-y | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFFood Chem
February 2025
Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Quinoa is an ancient Andean crop with a significant interest due to its nutritional and health benefits. This work provides a comprehensive metabolite profiling of five commercially available quinoa grains from diverse geographical origins. GC-MS analysis of primary metabolites identified sugars, sugar derivatives, and lipids as the predominant classes.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina.
Angiosperm pollen, the male gametophyte, plays a crucial role in facilitating fertilization by protecting and transporting male sperm cells to the female pistil. Despite their seemingly simple structure, pollen grains undergo intricate development to produce viable sperm cells capable of fertilizing the egg cell. Factors such as resource limitation and plant aging can disrupt normal pollen development and affect pollen performance.
View Article and Find Full Text PDFBMC Plant Biol
October 2024
Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca, 3480094, Chile.
The Andean domesticated common beans (Phaseolus vulgaris) are significant sources of phenolic compounds associated with health benefits. However, the regulation of biosynthesis of these compounds during bean seed development remains unclear. To elucidate the gene expression patterns involved in the regulation of the flavonoid pathway, we conducted a transcriptome analysis of two contrasting Chilean varieties, Negro Argel (black bean) and Coscorron (white bean), at three developmental stages associated with seed color change, as well as different flavonoid compound accumulations.
View Article and Find Full Text PDFPlants (Basel)
September 2024
Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil.
Exploring genetic resources through genomic analyses has emerged as a powerful strategy to develop common bean ( L.) cultivars that are both productive and well-adapted to various environments. This study aimed to identify genomic regions linked to morpho-agronomic traits in Mesoamerican and Andean common bean accessions and to elucidate the proteins potentially involved in these traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!