This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation. Mice were divided into four groups: control (PBS), ADSCs, ADSCs with TGF-β3 overexpression, and ADSCs with TGF-β3 knockdown. Melanin deposition was assessed via Fontana Masson staining, while ELISA measured the expression of MC1R and α-MSH. Western blotting was used to examine TGF-β3 and the activation of cAMP/PKA signaling pathway. Mice treated with ADSCs overexpressing TGF-β3 showed significant reductions in melanin deposition and suppressed expression of MC1R and α-MSH compared to controls. Western blot results revealed that the cAMP/PKA signaling pathway was downregulated in the TGF-β3-overexpressing ADSC group. In contrast, the knockdown of TGF-β3 led to increased melanin deposition and higher cAMP/PKA pathway activity, correlating with greater expression of MC1R and α-MSH. TGF-β3 secreted by ADSCs effectively inhibits melanin synthesis during wound healing, with potential effects on the cAMP/PKA signaling pathway. These findings suggest that TGF-β3 could serve as a potential therapeutic target for managing post-burn hyperpigmentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00403-025-03822-x | DOI Listing |
Arch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.
Background: Acupuncture is an effective treatment for knee osteoarthritis (KOA), reducing pain and improving function. While melatonin (MLT) has notable pain relief benefits, the analgesic mechanism of acupuncture in KOA and its relationship with melatonin are still unknown. This study aims to explore this mechanism.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea. Electronic address:
This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca-sensitive K channel inhibitor (paxilline), the ATP-sensitive K channel inhibitor (glibenclamide), or the inwardly rectifying K channel inhibitor (Ba) did not alter the vasodilatory effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!