Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

Published: January 2025

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region. Second, by tilting lasers along orthogonal axes, we establish a 2D polarization moiré pattern giving rise to closed orbital propagation of Floquet states, reminiscent of bulk Landau states. These features, imprinted in the bulk of the irradiated region and controlled through laser wavelength and tilt angles, establish a new way for engineering quantum states through spatially modulated light-matter coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c05716DOI Listing

Publication Analysis

Top Keywords

scalable photocurrents
8
spatially modulated
8
modulated light-matter
8
irradiated region
8
engineering floquet
4
floquet moiré
4
moiré patterns
4
patterns scalable
4
photocurrents intense
4
intense laser
4

Similar Publications

Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.

View Article and Find Full Text PDF

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a new way to create a titanium dioxide (TiO) electrode on graphene foam (GF) at low temperatures, which avoids the need for complicated heating processes.
  • The titanium dioxide films created through a quick 10-minute electrodeposition show significantly higher photocurrent (170 μA cm) compared to traditional carbon electrode methods (82 μA cm).
  • This increased photocurrent density makes the TiO-10/GF setup particularly suitable for portable, low-power photoelectrochemical biosensors.
View Article and Find Full Text PDF

Interfacing CuO, CuBiO, and protective metal oxide layers to boost solar-driven photoelectrochemical hydrogen evolution.

Dalton Trans

January 2025

Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

This article reports the development of CuO|CuBiO photocathodes stabilized by protective layers of TiO, MgO, or NiO, with Pt or MoS nanoparticles serving as co-catalysts to facilitate H evolution. Most notably, this work demonstrates the first application of MgO as a protection/passivation layer for photocathodes in a water-splitting cell. All configurations of photocathodes were studied structurally, morphologically, and photoelectrochemically revealing that CuO|CuBiO|MgO|Pt photocathodes achieve the highest stable photocurrent densities of -200 μA cm for over 3 hours with a Faradaic efficiency of ∼90%.

View Article and Find Full Text PDF

Nanostructured FeO/Cu O heterojunction for enhanced solar redox flow battery performance.

J Mater Chem A Mater

January 2025

Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland

Solar redox flow batteries (SRFB) have received much attention as an alternative integrated technology for simultaneous conversion and storage of solar energy. Yet, the photocatalytic efficiency of semiconductor-based single photoelectrodes, such as hematite, remains low due to the trade-off between fast electron hole recombination and insufficient light utilization, as well as inferior reaction kinetics at the solid/liquid interface. Herein, we present an α-FeO/Cu O p-n junction, coupled with a readily scalable nanostructure, that increases the electrochemically active sites and improves charge separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!