While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region. Second, by tilting lasers along orthogonal axes, we establish a 2D polarization moiré pattern giving rise to closed orbital propagation of Floquet states, reminiscent of bulk Landau states. These features, imprinted in the bulk of the irradiated region and controlled through laser wavelength and tilt angles, establish a new way for engineering quantum states through spatially modulated light-matter coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c05716 | DOI Listing |
Nano Lett
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.
While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
Dalton Trans
January 2025
Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
This article reports the development of CuO|CuBiO photocathodes stabilized by protective layers of TiO, MgO, or NiO, with Pt or MoS nanoparticles serving as co-catalysts to facilitate H evolution. Most notably, this work demonstrates the first application of MgO as a protection/passivation layer for photocathodes in a water-splitting cell. All configurations of photocathodes were studied structurally, morphologically, and photoelectrochemically revealing that CuO|CuBiO|MgO|Pt photocathodes achieve the highest stable photocurrent densities of -200 μA cm for over 3 hours with a Faradaic efficiency of ∼90%.
View Article and Find Full Text PDFJ Mater Chem A Mater
January 2025
Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
Solar redox flow batteries (SRFB) have received much attention as an alternative integrated technology for simultaneous conversion and storage of solar energy. Yet, the photocatalytic efficiency of semiconductor-based single photoelectrodes, such as hematite, remains low due to the trade-off between fast electron hole recombination and insufficient light utilization, as well as inferior reaction kinetics at the solid/liquid interface. Herein, we present an α-FeO/Cu O p-n junction, coupled with a readily scalable nanostructure, that increases the electrochemically active sites and improves charge separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!