Generative Model for Constructing Reaction Path from Initial to Final States.

J Chem Theory Comput

Preferred Networks, Inc., Tokyo 100-0004, Japan.

Published: January 2025

AI Article Synopsis

Article Abstract

Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths. The proposed method is initiated by inputting the coordinates of the initial state, followed by progressive alterations to its structure. This iterative process culminates in the generation of the guess reaction path and the coordinates of the final state. The method does not require one-the-fly computation of the actual potential energy surface and is therefore fast-acting. The application of this geometry-based method extends to complex reaction pathways illustrated by organic reactions. Training was executed on the Transition1x data set of organic reaction pathways. The results revealed the generation of reactions that bore substantial similarities with the test set of chemical reaction paths. The method's flexibility allows for reactions to be generated either to conform to predetermined conditions or in a randomized manner.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c01397DOI Listing

Publication Analysis

Top Keywords

reaction pathways
16
reaction path
8
chemical reaction
8
initial state
8
reaction
7
initial
5
generative model
4
model constructing
4
constructing reaction
4
path initial
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.

View Article and Find Full Text PDF

Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths.

View Article and Find Full Text PDF

Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.

Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.

View Article and Find Full Text PDF

Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!