AI Article Synopsis

Article Abstract

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.0 database were extracted. Genetic instruments for them were obtained from gene expression quantitative trait locus (eQTLs) study (n = 31,684). Aggregated data for sarcopenia-related traits [(including low hand grip strength (LHGS), appendiceal lean mass (ALM), and usual walking pace (UWP) were provided by large-scale genome-wide association studies (GWASs). We integrated eQTLs data with GWAS data to estimate genetic association between mitochondrial dysfunction and sarcopenia using summary-data-based Mendelian randomization (SMR) analysis. Additionally, we implemented colocalization analysis to strengthen their association. Finally, eQTLs data from skeletomuscular tissue (n = 706) was used to validate the primary findings.

Results: By integrating the analysis results from the three sarcopenia-related traits, two mitochondrial genes genetically associated with sarcopenia were identified, namely UQCC1 (tier 2 evidence) and ETFDH (tier 3 evidence). Specifically, elevated expression levels of UQCC1 increased LHGS risk (OR = 1.114; 95% CI, 1.078-1.152; P-FDR = 1.70 × 10-7), which matched the negative association between it and UWP (Beta = -0.015; 95% CI, -0.021 - -0.010; P-FDR = 6.70 × 10-5). Furthermore, elevated expression levels of ETFDH were found to be associated with both lower ALM (Beta = 0.031; 95% CI, 0.020-0.042; P-FDR = 1.41 × 10-6) and UWP (Beta = 0.013; 95% CI, 0.006-0.021; P-FDR = 0.029). Of note, consistent results were replicated in specific skeletomuscular tissues, further suggesting our findings were robust.

Conclusions: Our analyses revealed the genetic association between two mitochondrial-related genes, i.e., UQCC1 and ETFDH, and sarcopenia, highlighting the pivotal role of mitochondrial dysfunction driven by these genes in the pathogenesis of sarcopenia. Importantly, these candidate genes represent potential clinical drug targets for the treatment of sarcopenia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glaf006DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
20
mitochondrial-related genes
12
sarcopenia-related traits
12
association mitochondrial
8
dysfunction sarcopenia
8
sarcopenia summary-data-based
8
summary-data-based mendelian
8
mendelian randomization
8
data sarcopenia-related
8
eqtls data
8

Similar Publications

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!